Technische =N
Hochschule
Rosenheim

Technical University of Applied Sciences

Fakultat fur Informatik

Studiengang Informatik

Serialisierer im Akka Persistence Umfeld

Bachelor Thesis

von

Maximilian Bundscherer

Datum der Abgabe: 18.03.2019
Erstprifer: Prof. Dr. Korbinian Riedhammer
Zweitprufer: Prof. Dr. Gerd Beneken

ERKLARUNG

Ich versichere, dass ich diese Arbeit selbstdandig angefertigt, nicht anderweitig fiir
Priifungszwecke vorgelegt, keine anderen als die angegebenen Quellen oder Hilfs-
mittel benutzt sowie wortliche und sinngeméfle Zitate als solche gekennzeichnet

habe.
Rosenheim, den 18.03.2019

Maximilian Bundscherer

Abstract

Diese Bachelorarbeit beschiftigt sich mit der Serialisierung bzw. Deserialisierung im Akka
Persistence Umfeld. Akka Persistence ist eine Erweiterung fiir Akka Actors, eine Implemen-
tierung des Aktorenmodells. Akka Persistence wird im Bereich Event Sourcing eingesetzt
und léasst die Einbindung unterschiedlicher Serialisierer /De-Serialisierer zu.

Um den aktuellen Zustand durch Events im System abbilden und wiederherstellen zu
konnen, benotigt Akka einen kompatiblen und geeigneten Serialisierer /De-Serialisierer. Der
verwendete Serialisierer/De-Serialisierer sollte sowohl schnell! als auch praxistauglich? sein.
Daher stellt sich die Frage, welcher Serialisierer/De-Serialisierer geeignet ist.

Um auf die Fragestellung eingehen zu kdnnen, werden exemplarisch drei verschiedene
Serialisierer/De-Serialisierer miteinander verglichen:

1. Java Serialisierer/De-Serialisierer (Java-Standardserialisierung?)
2. JSON Serialisierer/De-Serialisierer (Circe?)

3. Google Protocol Buffers® Serialisierer/De-Serialisierer (ScalaPB®)

Die Arbeit hat gezeigt, dass die Praxistauglichkeit der Serialisierer/De-Serialisierer stark
vom Anwendungsfall abhidngig ist. Daher beschiftigt sich diese Bachelorarbeit mit dem
generellen Arbeiten mit Serialisierer /De-Serialisierer im Akka Persistence Umfeld; mit dem
konkreten Arbeiten mit den oben aufgefiihrten Serialisierer /De-Serialisierer in diesem
Umfeld und zeigt mogliche Bewertungskriterien beziiglich der Praxistauglichkeit auf.

Die Arbeit hat auch gezeigt, dass das Kriterium Schnelligkeit in der Praxis nicht von
Relevanz ist.

Schlagworte: Akka, Akka Persistence, Serialisierung, Event Sourcing, Java, Scala, Circe,
Google Protocol Buffers, SerDes

siehe Definition Schnelligkeit im Abschnitt 1.4

siehe Definition Praxistauglichkeit im Abschnitt 1.4

siehe http://openbook.rheinwerk-verlag.de/javainsel9/javainsel_17_010.htm
siehe https://github.com/circe/circe

siehe https://developers.google.com/protocol-buffers/

siehe https://github.com/scalapb/ScalaPB

NG WDN =

http://openbook.rheinwerk-verlag.de/javainsel9/javainsel_17_010.htm
https://github.com/circe/circe
https://developers.google.com/protocol-buffers/
https://github.com/scalapb/ScalaPB

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation 1
1.2 Zielder Arbeit. 2
13 Vorgehen 2
1.4 Definitionen 2
1.5 Abgrenzung 3

2 Beschreibung Umgebung und Technologie 5
2.1 Aktorenmodell 5
22 EventSourcing e 7
23 Akka . .. 8

231 Akka Actors 9
232 AkkaPersistence 10
2.4 Aufbau und Ablauf der Experimente, 14
2.4.1 Experiment E1 Vollstindige Umgebung 20
2.42 Experiment E2 Benchmark Umgebung 23

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld 27
3.1 Java Serialisierer/De-Serialisierer (Java-Standardserialisierung) 33
3.2 JSON Serialisierer /De-Serialisierer (Circe) 35
3.3 Google Protocol Buffers Serialisierer /De-Serialisierer (ScalaPB) 37

4 Fazit 41
4.1 Ergebnisse aus den Durchfiihrungen der Experimente 41
4.2 Schnelligkeit der Serialisierer/De-Serialisierer 43
4.3 Praxistauglichkeit der Serialisierer/De-Serialisierer 44

A Anhéange 47
A1 Ausziige aus den Eigenschaften der Referenzsysteme 47
A.2 Versionen der verwendeten Komponenten 48
A.3 Ergebnisse aus den Durchfiihrungen der Experimente 49

Literaturverzeichnis 53

ii

Abbildungsverzeichnis

2.1 Exemplarische Darstellung von drei Aktoren in einem Aktorensystem
2.2 Exemplarische Darstellung des FIFO-Prinzips
2.3 Exemplarische Darstellung des CORS-Prinzips
2.4 Paketiibersicht Quellcode der Experimente
2.5 Sequenzdiagramm von Experiment E1 Vollstindige Umgebung
2.6 Klassendiagramm von Experiment E2 Benchmark Umgebung

A.1 Visualisierung der Ergebnisse Durchfiihrung 1 (Referenzsystem R1 Windows 10)
A.2 Visualisierung der Ergebnisse Durchfiihrung 1 (Referenzsystem R2 iMac)

A.3 Visualisierung der Ergebnisse Durchfithrung 1 (Referenzsystem R3 AWS EC2) . .
A4 Visualisierung der Ergebnisse Durchfiihrung 2 (Referenzsystem R3 AWS EC2) . .

iii

iv

Tabellenverzeichnis

Auszug der Eigenschaften des Referenzsystem R1 Windows 10 47
Auszug der Eigenschaften des Referenzsystem R2 iMac 47
Auszug der Eigenschaften des Referenzsystem R3AWSEC2 47
Versionen der verwendeten Komponenten, 48
Ergebnisse Durchfithrung 1 (Referenzsystem R1 Windows 10) 49
Parameter Durchfiihrung 1 (Referenzsystem R1 Windows 10) 49
Ergebnisse Durchfiihrung 1 (Referenzsystem R2 iMac) 50
Parameter Durchfiihrung 1 (Referenzsystem R2 iMac) 50
Ergebnisse Durchfiihrung 1 (Referenzsystem R3 AWSEC2). 51
Parameter Durchfiihrung 1 (Referenzsystem R3 AWSEC2) 51
Ergebnisse Durchfiihrung 2 (Referenzsystem R3 AWSEC2). 52
Parameter Durchfithrung 2 (Referenzsystem R3 AWSEC2) 52

Abkirzungsverzeichnis

ES Event Sourcing

SerDes Serialisierer/De-Serialisierer

JSON JavaScript Object Notation

CQS Command-Query-Separation

CQRS Command-Query-Responsibility-Segregation
Protobuf Protocol Buffers

JVM Java Virtual Machine

JNI Java Native Interface

GC Garbage Collection

FIFO First In — First Out

JOS Java Object Serialization

vi

1 Einleitung

Diese Bachelorarbeit beschiftigt sich mit der Serialisierung bzw. Deserialisierung im Akka
Persistence Umfeld. Akka Persistence ist eine Erweiterung fiir Akka Actors, eine
Implementierung des Aktorenmodells. Akka Persistence wird im Bereich Event Sourcing
eingesetzt und ldsst die Einbindung unterschiedlicher Serialisierer /De-Serialisierer (SerDes)
zu.

Um den aktuellen Zustand durch Events im System abbilden und wiederherstellen zu
konnen, benotigt Akka einen kompatiblen und geeigneten SerDes. Der verwendete SerDes
sollte sowohl schnell! als auch praxistauglich? sein. Daher stellt sich die Frage, welcher
SerDes geeignet ist.

Um auf die Fragestellung eingehen zu kénnen, werden exemplarisch drei verschiedene
SerDes miteinander verglichen:

1. Java SerDes (Java-Standardserialisierung®) (sieche Abschnitt 3.1)
2. JSON SerDes (Circe?) (siehe Abschnitt 3.2)

3. Google Protocol Buffers® SerDes (ScalaPB®) (sieche Abschnitt 3.3)

1.1 Motivation

Akka Persistence kann im Bereich Event Sourcing (ES) eingesetzt werden [Akke]. Um den
aktuellen Zustand durch Events im System abbilden und wiederherstellen zu kénnen,
benotigt das Toolkit einen kompatiblen und geeigneten SerDes [Akkh]. Events werden bei
der Implementierung auf eine Klasse abgebildet. Das einzelne Event ist also ein Objekt zur
Laufzeit. Um diese Objekte speichern zu konnen, miissen diese erst auf eine Byte-Folge
abgebildet (serialisiert) werden.

Die Struktur eines Events kann sich im Laufe eines Software-Lebenszyklus dndern”. Damit
muss auch die Klasse in der Implementierung eines Events angepasst werden. Ein
geeigneter SerDes sollte die Byte-Folge, trotz Anpassung der Event-Ursprungsklasse, wieder
korrekt auf ein verwendbares und giiltiges Objekt der modifizierten neuen Event-Klasse
abbilden (deserialisieren) konnen.

siehe Definition Schnelligkeit im Abschnitt 1.4

siehe Definition Praxistauglichkeit im Abschnitt 1.4

siehe http://openbook.rheinwerk-verlag.de/javainsel9/javainsel_17_010.htm
siehe https://github.com/circe/circe

siehe https://developers.google.com/protocol-buffers/

siehe https://github.com/scalapb/ScalaPB

zum Beispiel durch eine Anderung der Geschiftslogik

N Ul W=

http://openbook.rheinwerk-verlag.de/javainsel9/javainsel_17_010.htm
https://github.com/circe/circe
https://developers.google.com/protocol-buffers/
https://github.com/scalapb/ScalaPB

1 Einleitung

1.2 Ziel der Arbeit

Ein Entwickler, der mit Akka Persistence arbeitet, muss sich mit der Wahl von einem SerDes
fiir seinen Anwendungsfall auseinandersetzen. Da die Wahl von vielen Kriterien abhédngt,
soll diese Arbeit dem Leser einen Uberblick verschaffen. Anschlieend soll der Leser
selbststandig entscheiden konnen, welcher SerDes fiir seinen Anwendungsfall geeignet ist.

Die Arbeit hat gezeigt, dass die Praxistauglichkeit der SerDes stark vom Anwendungsfall
abhéngig ist. Daher beschiftigt sich diese Bachelorarbeit mit dem generellen Arbeiten mit
SerDes im Akka Persistence Umfeld; mit dem konkreten Arbeiten mit den vorher
aufgefiihrten SerDes in diesem Umfeld und zeigt mogliche Bewertungskriterien beziiglich
der Praxistauglichkeit auf.

1.3 Vorgehen

Da es viele unterschiedliche Arten und Implementierungen von SerDes gibt, fokussiert sich
diese Arbeit auf die Einbindung, Konfiguration und das praktische Arbeiten mit diesen.

Um auf die Fragestellung eingehen zu konnen, werden exemplarisch drei verschiedene
SerDes miteinander verglichen:

¢ Standard Java SerDes als Vertreter der Standardkonfiguration von Akka Persistence.
Dieser SerDes sollte nicht in einer Produktivumgebung verwendet werden (mehr dazu
im Abschnitt 3.1).

¢ JSON SerDes (Circe) als Vertreter eines SerDes, dessen Format vom Menschen lesbar
ist.

* Google Protocol Buffers SerDes (ScalaPB) als Vertreter eines SerDes, dessen Format
nicht vom Menschen lesbar ist.

Diese Arbeit beschreibt zundchst die notigen Grundlagen; die verwendete Technologie &
Umgebung und stellt die drei SerDes in Form von zwei Experimenten (Experiment E1
Vollstindige Umgebung und Experiment E2 Benchmark Umgebung) gegeniiber.

Um einen genaueren Vergleich zu ermoglichen, werden die zwei Experimente mehrmals mit
unterschiedlichen Test-Parametern auf drei unterschiedlichen Referenzsystemen
(Referenzsystem R1 Windows 10, Referenzsystem R2 iMac und Referenzsystem R3 AWS EC2)
fiir jeden der drei SerDes durchgefiihrt.

1.4 Definitionen

In dieser Arbeit wird auf mehrere Definitionen zuriickgegriffen, die nicht allgemein konkret
genug sind. Daher werden diese genauer definiert:

¢ Schnelligkeit: In einer messbaren Zeit kann eine fest definierte Menge von
Operationen durchgefiihrt werden. Bei unterschiedlichen Parametern (zum Beispiel
unterschiedlichen Implementierungen) kann diese Zeit miteinander verglichen werden.

1.5 Abgrenzung

Ein System ist im Vergleich zu einem anderen System schneller, wenn es die gleiche
Menge an Operationen in einer kiirzeren Zeit durchfiihren kann.

¢ Praxistauglichkeit: Unter diesem Begriff versteht der Autor ob eine verwendete
Komponente sinnvoll (ohne viele Anpassungen) in der Praxis verwendet werden kann.

Es wird auflerdem auf weitere Definitionen zuriickgegriffen, die zum besseren Verstandnis
erklart werden:

* Serialisierung bezeichnet es, ein Objekt in eine Byte-Folge umzuwandeln [Kru09].

* Deserialisierung ist die Umkehrung der Serialisierung, bei der aus einer Byte-Folge
wieder ein Objekt erzeugt wird.

¢ Bindrkompatibel bezeichnet die Eigenschaft, wenn eine Information, die in Bindrcode
vorliegt, auf einem anderen System ohne erneute Kompilierung interpretierbar ist
[BUL].

1.5 Abgrenzung

Diese Arbeit beschrankt sich beztiglich Akka auf Akka Actors (Abschnitt 2.3.1) und Akka
Persistence (Abschnitt 2.3.2), da diese Komponenten den minimalen Aufbau fiir eine ES
getriebene Software in Akka bilden.

Akka Persistence bietet die Anbindung verschiedener Journal- und Snapshot
Storage-Plugins an (mehr dazu im Abschnitt 3). Diese haben einen Einfluss auf die
Schnelligkeit des Systems. Alle Experimente verwenden, um einen signifikanten Vergleich
sicherzustellen, die gleiche Anbindung. Diese Bachelorarbeit geht nicht auf die
unterschiedlichen Plugins ein, da dies nicht zur Beantwortung der Fragestellung beitréagt.

Diese Arbeit geht nicht auf die Versionsunterschiede der verwendeten
Software-Komponenten ein. Die Versionen der verwendeten Komponenten kénnen dem
Abschnitt A.2 enthommen werden.

2 Beschreibung Umgebung und Technologie

Akka implementiert mit Akka Actors das Aktorenmodell. Um den Zustand eines Aktors
nach dem Neustart wiederherstellen zu konnen, wird die Erweiterung Akka Persistence
verwendet. Um auf die Fragestellung eingehen zu konnen, werden in diesem Kapitel erst
die dafiir notigen Grundlagen geschaffen.

2.1 Aktorenmodell

Das Aktorenmodell ist ein Model aus der Informatik fiir die nebenldufige Programmierung.
Das Programm wird dabei in Aktoren unterteilt. Diese Aktoren werden in einem
Aktorensystem verwaltet. Aktoren kommunizieren ausschlieslich tiber unveranderbare
Nachrichten. Der Zustand eines Aktors ist von aufien nicht direkt sichtbar und kann auch
nur tiber Nachrichten abgefragt und modifiziert werden [Ode08]. Die Abbildung 2.1 zeigt
eine exemplarische Darstellung von drei Aktoren in einem Aktorensystem. Das Model
wurde 1973 das erste Mal von Carl Hewitt, Peter Bishop und Richard Steiger beschrieben
[ACM] und ist bei funktionalen Programmiersprachen wie zum Beispiel Erlang stark
verbreitet.

Beschreibung eines Aktors

Ein Aktor ist eine kleine Verarbeitungseinheit in einem System, dessen Zustand von aufsen
nicht direkt einsehbar oder verdnderbar ist. Um mit einem Aktor interagieren zu kdnnen,
um zum Beispiel dessen Zustand einsehen oder verandern zu kénnen, wird ausschliefSlich
in Form von unverdnderbaren Nachrichten mit diesem kommuniziert. Ein Aktor kann
Nachrichten empfangen und selbst versenden. Eingehende Nachrichten werden zunéchst in
dem Postfach des jeweiligen Aktors hinterlegt.

Der Aktor arbeitet sequentiell die eingegangenen Nachrichten aus seinem Postfach ab. Das
Postfach verwaltet die Nachrichten in Form einer Warteschlange. Daher arbeitet ein Aktor
nach dem First In — First Out (FIFO)-Prinzip. Bei dem FIFO-Prinzip werden Nachrichten in
der Reihenfolge abgearbeitet, in der diese eingegangen sind. Die Abbildung 2.2 visualisiert
dieses Prinzip.

2 Beschreibung Umgebung und Technologie

£ Imaitbox

Quelle [PICa]

Abbildung 2.1 Exemplarische Darstellung von drei Aktoren in einem Aktorensystem

6]
Enaueue))
enqueue)
o)

5
Enque 4 4
Enque@y 3 3 3
Enqueusv 2 2 2 2
1 1 1 1
6 6 6 6 6]
i 2 2 5 \Dequeue
\Dequeue \+
3 3 \Dequeue ~ “—=[4]
2 \Deq ueue \—-

\Dequeue [2]
~—[1]

Quelle [PICc]

Abbildung 2.2 Exemplarische Darstellung des FIFO-Prinzips

2.2 Event Sourcing

(Abfrage Fassade / |

Befehlsseite Abfrageseite
Ereignisse E
ﬂen’t Stor\
Domdnenmodell 1 : [Projektion
- L\ N
[Command handler 1 i Abfragemodele
_i
I

Befehl
Abfrageergebnis
[Aufgaben orientiertes Benutzerinterface]
Quelle [PICDb]

Abbildung 2.3 Exemplarische Darstellung des CQRS-Prinzips

2.2 Event Sourcing

Beim ES werden alle Verdnderungen des Zustands eines Systems in Form von Events
abgebildet [Pac18]. Durch diese Architekturentscheidung ist es moglich, das komplette
System zu jedem Zeitpunkt wiederherstellen zu konnen. Das unterstiitzt nicht nur bei
Fehlersuche, sondern ermoglicht es auch, besser zu verstehen wie mit dem System
gearbeitet wird. Eine Software basierend auf dieser Architektur wird tiblicherweise nach
dem Command-Query-Responsibility-Segregation (CQRS)-Prinzip (eine Variante des
Command-Query-Separation (CQS)-Prinzips) implementiert [Pac18].

Beschreibung des Command-Query-Separation-Prinzips

Bei diesem Prinzip wird zwischen zwei verschiedenen Methoden unterschieden:

* Queries (Abfragen): Eine Abfrage liefert Daten zuriick und verdndert nicht den
Zustand [MAR].

¢ Commands (Kommandos): Ein Kommando verdndert den Zustand und liefert keine
Daten zurtick [MAR].

Events im Command-Query-Responsibility-Segregation-Prinzip

Nach dem Erhalt eines Kommandos wird dieses zuerst gegen den aktuellen System-Zustand
validiert und bei erfolgreicher Validierung als Event gekennzeichnet und z.B.: in den Event
Store, zum Beispiel einer Datenbank, abgebildet [CQR]. Dieses Konzept wird in Abbildung
2.3 (Befehlsseite) visualisiert. Erst nach einer erfolgreichen Validierung wird die
Zustandsanderung durchgefiihrt.

2 Beschreibung Umgebung und Technologie

Eine solche Validierung kann exemplarisch folgende Punkte beinhalten:

e Darf der Kommandoersteller diese Aktion durchfiithren?

¢ Wird nach der Verarbeitung des Events der Zustand fiir den Anwendungsfall
ungiiltig?

Ein Kommando (bzw. Event) enthilt typischerweise folgende Daten:
¢ Art des Events (zum Beispiel Verkaufen)
* Nutzdaten des Events (zum Beispiel Fiinf Autos)
¢ Zeitstempel (zum Beispiel 01. Januar 1980)

Durch die Speicherung von Events und durch die anschlieffende chronologische
Abarbeitung, ist es moglich jeden durchlaufenden Zustand wiederherzustellen [MIC].

2.3 Akka

Akka ist ein Open-Source Toolkit fiir die Erstellung von parallelisierten, verteilten,
ausfallsicheren und nachrichtengesteuerten Anwendungen in Scala und Java [Akkf]. Akka
implementiert mit Akka Actors das Aktorenmodell (siehe Abschnitt 2.1) und mit Akka
Persistence den ES-Ansatz (siehe Abschnitt 2.2). Akka ist fiir den Einsatz innerhalb der Java
Virtual Machine (JVM)! konzipiert und implementiert. Folgende Komponenten sind
Bestandteil von Akka [Akkd]:

¢ Akka Actors (wird in dieser Arbeit behandelt)

¢ Akka Streams

e Akka Http

e Akka Cluster

¢ Cluster Sharding

¢ Distributed Data

¢ Akka Persistence (wird in dieser Arbeit behandelt)
¢ Alpakka

¢ Akka gRPC

¢ Commercial Addons

¢ Akka Management

Wie bereits im Abschnitt 1.5 erwidhnt, beschrankt sich diese Arbeit auf Akka Actors und
Akka Persistence, da diese Komponenten den minimalen Aufbau fiir eine ES getriebene
Software in Akka bilden.

1 https://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html?intcmp=3170

https://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html?intcmp=3170

2.3 Akka

2.3.1 Akka Actors

Akka Actors ist eine Implementierung des Aktorenmodells (siehe Abschnitt 2.1). An der
folgenden exemplarischen Implementierung wird verdeutlicht, wie man mit einem Akka
Aktor arbeitet. Der ExampleActor in dieser Implementierung besitzt einen Zustand in
Form eines ganzzahligen Werts (Int).

Zuerst werden alle Nachrichten deklariert:

object ExampleActor {

case object Increment
case object Decrement

case object WhatIsYourResult
case class MyResultIs (value: Int)

¢ Nachrichten vom Typ Increment kdnnen dazu benutzt werden, um den internen
Zustand des Aktors um den Wert 1 zu erhohen. Diese Nachrichten sind Kommandos.

¢ Nachrichten vom Typ Decrement konnen dazu benutzt werden, um den internen
Zustand des Aktors um den Wert 1 zu verringern. Diese Nachrichten sind
Kommandos.

¢ Nachrichten vom Typ WhatIsYourResult konnen dazu benutzt werden, um tiber
den internen Zustand des Aktors Auskunft zu erhalten. Diese Nachrichten sind
Abfragen. Der Aktor antwortet auf diese Nachrichten mit einer Nachricht vom Typ
MyResultIs.

Der ExampleActor wird anschlieffend wie folgt implementiert:

import akka.actor._
class ExampleActor extends Actor ({
import ExampleActor._
var state: Int = 0
override def receive: Receive = {
case Increment =>
state = state + 1
case Decrement =>
state = state - 1

case WhatIsYourResult =>

2 Beschreibung Umgebung und Technologie

sender ! MyResultIs(value = state)

¢ Die Variable state beschreibt den Zustand des Aktors in Form eines ganzzahligen
Werts (Int). Der Wert betrédgt bei der Initialisierung des Aktors 0.

* Uber die Funktion receive erhilt der Aktor die eingehenden Nachrichten
(Kommandos oder Abfragen). Mit Hilfe einer Fallunterscheidung wird anschlieflend
unterschieden, um welche Nachrichten es sich handelt.

* Bei der Abfrage What IsYourResult wird der Versender der Nachricht (sender)
tiber den aktuellen Zustand des Aktors in Form einer Nachricht
(MyResultIs (value = state)) informiert. Der Aktor verfolgt nun nicht weiter
die versendete Nachricht und wartet keine Empfangsbestitigung vom sender ab.
Dieses Verhalten wird in der Informatik als Fire-and-Forget bezeichnet und wird an
dieser Stelle mit dem Operator ! gekennzeichnet.

Der Zustand wird nicht gesichert und geht damit nach dem Beenden des Aktors
unwiderruflich verloren. Ein Akka Persistence Aktor kann hingegen seinen Zustand
speichern und wiederherstellen (siehe Abschnitt 2.3.2).

2.3.2 Akka Persistence

Um den Zustand eines Akka Aktors nach dem Beenden wiederherstellen zu konnen, kann
Akka Persistence verwendet werden [Akkg]. Akka Persistence ist eine Erweiterung fiir
Akka, die es ermoglicht, den Zustand von Akka Persistence Aktoren mithilfe der
Speicherung und Verwaltung von Events und optionalen Momentaufnahmen (Snapshots),
auch nach dem Beenden der Aktoren wiederherzustellen zu konnen. Damit ist Akka
Persistence eine Implementierung des ES-Ansatzes [Akke].

Ein Akka Persistence Aktor verhilt sich von aufsen betrachtet wie ein Akka Aktor. Alle
Anderungen des Zustands werden auf Events und Snapshots abgebildet. Events werden
durch Akka Persistence im Journal verwaltet, was im ES-Ansatz den Event Store darstellt
(siehe Abschnitt 2.2). Snapshots werden im Snapshot Storage verwaltet. Die optionalen
Snapshots dienen nur der Geschwindigkeitsoptimierung bei der Wiederherstellung des
letzten Zustands eines Akka Persistence Aktors.

Wenn ein Akka Persistence Aktor startet, befindet sich dieser erst im
receiveRecover-Modus, also im Wiederherstellungsmodus. In diesem Modus stellt der
Aktor zuerst einen vergangenen Zustand iiber den letzten verfiigbaren Snapshot wieder her.
Anschliefiend stellt der Aktor iiber die Events ab diesem Snapshot seinen letzten giiltigen
Zustand her. Die Zustellung des Snapshots und der Events erfolgt in der chronologisch
korrekten Reihenfolge. Wenn der Zustand beispielsweise tiber zehn Events abgebildet
wurde und ein Snapshot bis zum sechsten Event vorliegt, wird dem Aktor erst dieser
Snapshot zugestellt und anschlieffend die vier Events ab diesem Snapshot.

10

2.3 Akka

Nach der Wiederherstellung befindet sich der Aktor im receiveCommand-Modus, also
dem normalen Betriebsmodus. In diesem Modus ist der Aktor wieder von aufien erreichbar
und verarbeitet aktiv Nachrichten aus seinem Postfach.

An der folgenden exemplarischen Implementierung wird verdeutlicht, wie man mit einem
Akka Persistence Aktor arbeitet. Der PersistentExampleActor in dieser
Implementierung besitzt einen Zustand in Form eines ganzzahligen Werts (Int). In dem
vorliegenden Beispiel wird der ExampleActor aus dem Abschnitt 2.3.1 zu einem Akka
Persistence Aktor.

Zuerst werden wieder alle Nachrichten deklariert:

object PersistentExampleActor {
sealed trait Evt

case object Increment extends Evt
case object Decrement extends Evt

case object WhatIsYourResult
case class MyResultIs(value: Int)

¢ Nachrichten vom Typ Increment kdonnen dazu benutzt werden, um den internen
Zustand des Aktors um den Wert 1 zu erhohen. Diese Nachrichten erben von Evt, da
diese Kommandos spater als Events verwendet werden.

¢ Nachrichten vom Typ Decrement konnen dazu benutzt werden, um den internen
Zustand des Aktors um den Wert 1 zu verringern. Diese Nachrichten erben von Evt,
da diese Kommandos spéter als Events verwendet werden.

¢ Nachrichten vom Typ What IsYourResult konnen dazu benutzt werden, um iiber
den internen Zustand des Aktors Auskunft zu erhalten. Diese Nachrichten sind
Abfragen. Der Aktor antwortet auf diese Nachrichten mit einer Nachricht vom Typ
MyResultlIs.

Der PersistentExampleActor wird anschlieffend wie folgt implementiert:

import akka.actor._
import akka.persistence._

class PersistentExampleActor extends PersistentActor {
import PersistentExampleActor._

var state: Int 0

override def persistenceld: String = "persistentExampleActorId"

11

2 Beschreibung Umgebung und Technologie

¢ Die Variable state beschreibt den Zustand des Aktors in Form eines ganzzahligen
Werts (Int). Der Wert betragt bei der Initialisierung des Aktors 0.

¢ Die Variable persistenceId definiert die ID des Aktors. Diese ID wird spiter fiir
die Zuordnung im Journal und im Snapshot Storage genutzt (mehr dazu im Abschnitt
3).

override def receiveCommand: Receive = {
case Increment =>
persist (Increment) { evt => updateState(evt) }
case Decrement =>
persist (Decrement) { evt => updateState(evt) }
case WhatIsYourResult =>

sender ! MyResultIs(value = state)

e Uber die Funktion receiveCommand erhilt der Aktor die eingehenden Nachrichten
(Kommandos oder Abfragen) im receiveCommand-Modus, also dem normalen
Betriebsmodus. Mit Hilfe einer Fallunterscheidung wird anschliefSend unterschieden,
um welche Nachrichten es sich handelt.

e Uber den Aufruf von persist (cmd) { evt => updateState (evt) } wird aus
dem Kommando (cmd) ein Event (evt). Dieses Event wird im Journal abgelegt und
anschlieSend von der Funktion updateState (evt: Evt) verarbeitet.

private def updateState(evt: Evt): Unit = evt match {
case Increment =>

state = state + 1
snapshot ()

case Decrement =>

state = state - 1
snapshot ()

}

Uber die Funktion updateState (evt: Evt) wird eine Zustandsinderung nach einer
Fallunterscheidung durchgefiihrt und anschlieffend die Funktion snapshot angesprochen.
Diese Funktion wird sowohl im normalen Betriebsmodus als auch im
Wiederherstellungsmodus genutzt.

12

2.3 Akka

private def snapshot (): Unit = {
if |
!recoveryRunning &é&
lastSequenceNr % 5 == 0 &&
lastSequenceNr != 0

) saveSnapshot (state)

}

Uber die Funktion snapshot wird vom Zustand des Aktors ein Snapshot angefertigt und
tiber den Aufruf von saveSnapshot (state) im Snapshot Storage abgelegt. Die Funktion
snapshot {iberpriift vor dieser Prozedur, ob der Aktor nicht im Wiederherstellungsmodus
lauft, ob es sich nicht um die erste zugestellte Nachricht handelt und, dass nur jede fiinfte

Nachricht zu einem Snapshot fiihrt.

override def receiveRecover: Receive = {
case SnapshotOffer(_, snapshot: Int) =>
state = snapshot

case evt: Evt =>

updateState (evt)

}

Uber die Funktion receiveRecover erhilt der Aktor die eingehenden Nachrichten
(Snapshots oder Events) im receiveRecover-Modus, also dem Wiederherstellungsmodus.
Mit Hilfe einer Fallunterscheidung wird anschlieffend unterschieden, um welche
Nachrichten (Snapshots oder Events) es sich handelt:

¢ Beim Empfangen eines Snapshots (case SnapshotOffer(_, snapshot: Int))
wird der Zustand des Aktors auf den Snapshot gesetzt.

* Beim Empfangen von Events (case evt: Evt) werden diese wieder durch
updateState verarbeitet.

13

2 Beschreibung Umgebung und Technologie

2.4 Aufbau und Ablauf der Experimente

Um die Schnelligkeit und Praxistauglichkeit (siehe Definitionen im Abschnitt 1.4) der
SerDes zu eruieren, wurden zwei Experimente konzipiert:

¢ Experiment E1 Vollstindige Umgebung: Dieses Experiment wurde entwickelt, um die
ausgewdhlten SerDes in einem vollstandigen Umfeld zu testen. Ein vollstindiges
Umfeld stellt einen minimalen Akka Persistence Aufbau mit einem
Test-Aktorensystem und mit einem Test-Aktor dar. Das Experiment und das
vollstindige Umfeld werden im Abschnitt 2.4.1 beschrieben.

¢ Experiment E2 Benchmark Umgebung: Dieses Experiment testet isoliert die
ausgewdhlten SerDes beziiglich Geschwindigkeit tiber ScalaMeter. Das Experiment
wird im Abschnitt 2.4.2 beschrieben.

Beschreibung der verwendeten externen Komponenten

In den Experimenten wurden verschiedene externe Komponenten verwendet, die nun zum
besseren Verstandnis erldutert werden:

¢ Java JDK ist eine Sammlung von Programmierwerkzeugen und
Programmbibliotheken, um Anwendungen mit der Programmiersprache Java
entwickeln zu konnen [Jav].

® Scala ist eine funktionale und objektorientierte Programmiersprache fiir die JVM
[SCAD].

* SBT ist ein Build-Werkzeug [SCAf].

e Akka Actors ist eine Implementierung des Aktorenmodells fiir die JVM (siehe
Abschnitt 2.3.1) [Akkd].

¢ Akka Persistence ist eine Implementierung des ES-Ansatzes fiir Akka Actors (siehe
Abschnitt 2.3.2) [Akkd].

¢ Circe ist eine JavaScript Object Notation (JSON)-Implementierung fiir Scala (siehe
Abschnitt 3.2) [GITa].

e LevelDB JNI ist ein Java Native Interface (JNI)? fiir die Datenbank LevelDB? [GITb].
¢ Port of LevelDB to Java ist eine Portierung der Datenbank LevelDB zu Java [GITc].

* ScalaMeter ist ein Microbenchmarking- und Regressionstestframework fiir die JVM
und die Programmiersprache Scala (siehe Abschnitt 2.4.2) [GITd].

® ScalaPB ist ein Protocol Buffers (Protobuf)-Compiler fiir Scala (siehe Abschnitt 3.3)
[GITe].

Die Versionen der verwendeten Komponenten werden im Abschnitt A.2 dokumentiert.

14

2.4 Aufbau und Ablauf der Experimente

main
protobuf
resources
akka-system-java.conf
akka-system-json.conf
akka-system-protobuf.conf
application.conf
params.conf
scala
de.maxbundscherer.akka.serializationcomparision
actors
¢ CarGarageActor
persistence
java
json
protobuf
o CarGarageAggregate
samplecode
serializer
services
¢ CarGarageService
utils
T Configuration
ExperimentRunner
T SimpleTimeMeasurement

o TestSet
© TimePrinter
© Main
test
scala

de.maxbundscherer.akka.serializationcomparision
AbstractTest
JavaTest

0

0

¢ JsonTest
ProtobufTest

0

Abbildung 2.4 Paketiibersicht Quellcode der Experimente

15

2 Beschreibung Umgebung und Technologie

Aufbau des Quelicodes

Die Experimente wurden in Scala implementiert. Der vollstandige Quellcode und die
dazugehorige Dokumentation, ist dem Github-Projekt

maxbundscherer/akka—serialization—comparision4

zu entnehmen.

Da eine Darstellung des gesamten Quellcodes in Form eines Klassendiagramms iiber beide
Experimente zu untibersichtlich wird, wird im Laufe der Arbeit das Experiment E1
Vollstindige Umgebung als Sequenzdiagramm (Abschnitt 2.4.1) und das Experiment E2
Benchmark Umgebung als Klassendiagramm (Abschnitt 2.4.2) visualisiert.

Der Abbildung 2.4 ist der Aufbau des Quellcodes zu entnehmen. Um diesen genauer zu
verstehen, werden nun die einzelnen Pakete beschrieben:

* main/protobuf/: Aus .proto-Dateien in diesem Paket generiert der
Protobuf-Compiler ScalaPB von den Protobuf-Beschreibungen den Scala-Quellcode
(mehr dazu im Abschnitt 3.3). Dieser Compiler wird als SBT Plugin eingebunden und
kompiliert vor dem eigentlichen kompilieren der Scala-Klassen.

* main/resources/: In diesem Paket sind die Konfigurationen (application.conf
und akka-system—-«.conf) und die Test-Parameter (params.conf) hinterlegt. Die
verschiedenen SerDes werden tiber die jeweiligen Konfigurationen (zum Beispiel
akka-system-java.conf) eingebunden. Diese Konfigurationen tiberschreiben die
Grundkonfiguration (application.conf). Um einen realistischen Ablauf zu
ermoglichen, wurden nur fiir die Experimente notwendigen Parameter manuell

konfiguriert.

®* main/scala/[...]/:In diesem Paket befindet sich der Programmeinstiegspunkt
fir Experiment E1 Vollstindige Umgebung. Dieses wird im Abschnitt 2.4.1 genauer
spezifiziert.

® main/scala/[...]/actors/: In diesem Paket befindet sich der Test-Aktor fiir das

Experiment E1 Vollstindige Umgebung.

® main/scala/[...]/persistence/: In diesem Paket werden die Nachrichten,
Kommandos und Events deklariert. Generierte Scala-Klassen von ScalaPB werden hier
abgelegt. Klassen aus diesem Paket sind fiir die verschiedenen SerDes von Relevanz.

® main/scala/[...]/samplecode/: In diesem Paket befindet sich
Beispiels-Quellcode fiir diese Arbeit. Dieses Paket ist fiir die Experimente nicht von
Relevanz.

® main/scala/[...]/serializer/: In diesem Paket werden die unterschiedlichen

SerDes eingebunden und angesprochen.

® main/scala/[...]/services/: In diesem Paket befindet sich eine
Abstraktionssicht, um typsicher mit dem Test-Aktor interagieren zu konnen.
Typsicherheit reduziert unter anderem unerwiinschtes oder fehlerhaftes
Programmverhalten [UNI].

2 https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
3 https://github.com/google/leveldb
4 https://github.com/maxbundscherer/akka-serialization—comparision

16

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://github.com/google/leveldb
https://github.com/maxbundscherer/akka-serialization-comparision

2.4 Aufbau und Ablauf der Experimente

® main/scala/[...]/utils/: In diesem Paket befinden sich verschiedene hilfreiche
Implementierungen (zum Beispiel die Zeitmessung und Testdatengenerierung).

® test/scala/[...]/:In diesem Paket befindet sich der Programmeinstiegspunkt
fiir Experiment E2 Benchmark Umgebung. Dieses wird im Abschnitt 2.4.2 genauer
spezifiziert.

Hinweis: In der Auffiihrungist [...] durch
de/maxbundscherer/akka/serializationcomparision zu ersetzen.

Besonderheiten in Scala

Die Experimente (Experiment E1 Vollstindige Umgebung und Experiment E2 Benchmark
Umgebung) wurden in Scala implementiert. Der Java-SerDes und andere verwendete
Komponenten sind in Java implementiert. Es ist moglich, diese Java-Komponenten innerhalb
von Scala zu benutzen, da Scala-Bytecode mit Java-Bytecode kompatibel ist. Als Bytecode
wird eine Sammlung von Befehlen fiir eine virtuelle Maschine bezeichnet.
Programmiersprachen wie Java und Scala werden nicht zu einem direkten Maschinencode
kompiliert, sondern zu einem Zwischencode (genannt Bytecode) [TEC]. Java- und
Scala-Bytecodes sind innerhalb der JVM lauffiahig und miteinander kompatibel. Dadurch
konnen Scala-Komponenten von Java-Komponenten benutzt werden und andersrum
[SCAa]:

object Example {

val javaUUID : java.util.UUID = java.util.UUID.randomUUID ()
val scalaString : String = javaUUID.toString

}

In der Programmiersprache Scala sind Traits vertreten. Diese sind dhnlich zu einem
Interface in Java 8 [SCAg]. Traits selbst konnen nicht instanziiert werden, besitzen
keinen Konstruktor, konnen aber Implementierungen und Daten enthalten. Eine
Scala-Klasse kann von mehreren Traits erweitert werden, aber nicht von mehreren
abstrakten Scala-Klassen. Traits konnen dazu benutzt werden, um Daten zwischen
Scala-Klassen auszutauschen. Diesen Mechanismus verwendet der

trait Configuration im utils-Paket, um Konfigurationen Entwicklern zuganglich zu
machen:

trait Configuration {
object Config {
val testConfig = "testValue"
}
}

object Example extends Configuration {
val myConfig = Config.testConfig
}

17

2 Beschreibung Umgebung und Technologie

In Scala ist es mit dem Schliisselwort implicit mdoglich, Klassen ohne direkt sichtbaren
Quellcode zu erweitern [ALV]. Dieser Mechanismus dhnelt den Erweiterungsmethoden® aus
der Programmiersprache C#. In der Scala-Klasse JsonSerializer wird dieser
Mechanismus verwendet, um die Klasse AddCarEvtDb um die Methode .asJson zu
erweitern. Dies ist moglich, da die Klasse JsonSerializer das Paket
io.circe.syntax._ im Quellcode importiert und die Klasse AddCarEvtDb von der
Klasse AnyVal erbt:

package io.circe

/ * %
* This package provides syntax via enrichment classes.
*/
package object syntax {
implicit final class EncoderOps[A] (val wrappedEncodeable: A) extends
AnyVal {
final def asJson(implicit encoder: Encoder[A]): Json = 2?27
}
implicit final class StringOps(val value: String) extends AnyVal ({
final def :=[A: Encoder] (a: A): (String, Json) = 2727

Durch das Importieren von diesem Package object ist es moglich, bei Objekten der
Klasse AddCarEvtDb die Methode .asJson benutzen zu kdnnen:

val value: AddCarEvtDb = 2?7?27
value.asJdson

Hinweis: Einige Punkte wurden in diesem Beispiel nicht implementiert, wie man an 2??
erkennen kann, da diese nicht zum aktuellen Verstandnis beitragen wiirden.
Gemeinsame Testdaten fiir die Experimente

Die Testdaten werden vor den Durchldufen automatisch generiert. Um einen sinnvollen
Vergleich sicherzustellen, werden die Testdaten beim Start eines Experiments generiert und
alle Laufe laufen mit den gleichen Testdaten ab (mehr dazu im Abschnitt 4.1).

Es wird zwischen zwei Arten von Testdatenklassen unterschieden:

case class Car(
id: Int,
horsepower: Int,
name: String

und

5 https://docs.microsoft.com/de-de/dotnet/csharp/programming—guide/
classes—and-structs/extension-methods

18

https://docs.microsoft.com/de-de/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/de-de/dotnet/csharp/programming-guide/classes-and-structs/extension-methods

2.4 Aufbau und Ablauf der Experimente

case class ComplexCar (
id: Int,
horsepower: Int,
name: String,
fuelConsumption: Float,
dieselEngine: Boolean,
seatAdjustment: Boolean,
fuelTank: Double,
brakingDistance: Double,
notes: String

)

Testobjekte aus der Klasse Car eigenen sich, um die unterschiedlichen SerDes bei einer
geringen Last zu testen. Testobjekte aus der Klasse ComplexCar eigenen sich, um die
unterschiedlichen SerDes bei einer htheren Last zu testen.

Die Generierung der Testdaten ldsst sich mit den folgenden Parametern beeinflussen:

* numberOfTestCars: Dieser Wert bestimmt die Anzahl der Testdaten (zum Beispiel
10000)

e carNameStringMaxLength: Dieser Wert bestimmt die maximale Zeichenanzahl des
Attributs name bei Objekten aus der Testklasse Car und ComplexCar (zum Beispiel
200).

e complexCarNotesStringMaxLength: Dieser Wert bestimmt die maximale
Zeichenanzahl des Attributs notes bei Objekten aus der Testklasse ComplexCar
(zum Beispiel 900).

Die Parameter befinden sich in der Konfigurationsdatei® unter dem Abschnitt testSet.

Wichtige Hinweise zu der Durchfiihrung der Experimente

Um die Experimente selbst durchfiihren zu kénnen, wird SBT benétigt. SBT sollte vor den
Experimenten anders als Standard parametrisiert werden, um mehr Ressourcen
(zum Beispiel Arbeitsspeicher) auf dem Zielsystem nutzen zu kdnnen.

Dies ist tiber eine Umgebungsvariable mit dem Befehl
export SBT_OPTS="-XmslG -Xmx8G" moglich:

¢ Der Parameter Xms gibt die initial allokierte Heap-Grofie an.

* Der Parameter Xmx gibt die maximal allokierbare Heap-Grofie an.
Mit folgenden Befehlen konnen die Experimente gestartet werden:

* Experiment E1 Vollstindige Umgebung: sbt clean run

¢ Experiment E2 Benchmark Umgebung: sbt clean test

6 https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/
src/main/resources/params.conf

19

https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf
https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf

2 Beschreibung Umgebung und Technologie

¢ Starten beider Experimente (sequentiell): sbt mixedMode

¢ Starten beider Experimente (sequentiell) und die Ausgabe protokollieren:
./autoRunner.sh

Messschwankungen

Messschwankungen konnen zum Beispiel durch nicht vorhersehbare Durchlaufzeiten von
Garbage Collection (GC), verschiedene automatische Optimierungsmafinahmen (z.B.:
adaptive Zwischenspeicherung von Befehlen u. Daten und eine sich selbst optimierende
Sprungvorhersage) und unterschiedliche Festplattenzugriffszeiten entstehen.

Um diese Schwankungen zu reduzieren, werden die Laufe mehrmals auf unterschiedlichen
Referenzsystemen (Referenzsystem R1 Windows 10, Referenzsystem R2 iMac und
Referenzsystem R2 iMac) durchgefiihrt.

2.4.1 Experiment E1 Wolistdndige Umgebung

Dieses Experiment lauft {iber sogenannte ExperimentRunner ab. Jeder SerDes wird tiber
einen eigenen ExperimentRunner getestet. Die ExperimentRunner laufen nicht
parallel, sondern sequentiell, und unterscheiden sich nur tiber die Verwendung von
unterschiedlichen SerDes. Um einen aussagekraftigen Vergleich sicherzustellen, werden auf
den Umgebungen immer dieselben Operationen mit den gleichen Testdaten und den
gleichen Testparametern durchgefiihrt. Die benttigte Durchlaufzeit wird wahrend des
Experiments gemessen und anschlieffend ausgegeben. Bei der Durchfiihrung dieses
Experiments entstehen starke Messschwankungen (siehe Abschnitt 2.4). Die genaue
ExperimentRunner-Implementierung ldsst sich dem Github-Projekt
maxbundscherer/akka—serialization—comparision7 entnehmen.

Die Abbildung 2.5 stellt den Ablauf eines ExperimentRunners als abstraktes
nicht-vollstandiges Sequenzdiagramm dar:

¢ Teildurchlauf: Abfragen aller Autos wird dazu benutzt, um tiber den internen
Zustand des Test-Aktors Auskunft zu erhalten. Um diesen Zustand iibermitteln zu
konnen, muss der Aktor erst gestartet und vollstindig wiederhergestellt werden.
Daher wird dieser Mechanismus benutzt, um einen Start und eine
Wiederherstellung des Aktors zu erzwingen.

¢ Teildurchlauf: Anlegen aller Autos wird dazu benutzt, um den internen Zustand des
Test-Aktors zu modifizieren. Dieser Teildurchlauf legt eine tiber Parameter definierte
Anzahl von Objekten aus der Klasse Car und ComplexCar an. Die Erstellung erfolgt
uber die Events AddCarEvt und AddComplexCarEvt. Diese Events werden vor der
eigentlichen Zustandsanderung serialisiert. Daher wird dieser Teildurchlauf genutzt,
um die Serialisierung zu testen.

7 https://github.com/maxbundscherer/akka-serialization-comparision/blob/
master/src/main/scala/de/maxbundscherer/akka/serializationcomparision/utils/
ExperimentRunner.scala

20

https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/scala/de/maxbundscherer/akka/serializationcomparision/utils/ExperimentRunner.scala
https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/scala/de/maxbundscherer/akka/serializationcomparision/utils/ExperimentRunner.scala
https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/scala/de/maxbundscherer/akka/serializationcomparision/utils/ExperimentRunner.scala

2.4 Aufbau und Ablauf der Experimente

ExparimaniRunnear ActorSysiem

Starten Test-Aktorsystam mit Test-Aktor

. ¥

Test-Aktorsystem mit konfigurierien SarDes
initalisaren und Test-Akior staran

Zeiimessung starten %

Teildurchlauf: Abfragen allar Autos

Teildurchlauf: Anlegen aller Autos

Test-Aktor Absturz simulieran

yY_. ¥ _____|

Tast-Akior Absturz simulieren
und anschhsland Akior wiederherstellen

|
Teildurchlauf: Bearbeiten aller Autos I":

|
>

Test-Aktor Absturz simulieran

Tast-Akior &bsturz simuliaren
und anschhsland Aktor wiederherstellen

Teildurchlaut: Albfragen aller Autos

Y Y Y Y

Zeiimassung beandsn %

Besnden Test-Astorsystem mit Test-Akior

vy ____ ¥ __

T
I

I

I

: Test-Aktor und Test-Aktorsystem

| beenden

|

I

I

Abbildung 2.5 Sequenzdiagramm von Experiment E1 Vollstindige Umgebung

21

2 Beschreibung Umgebung und Technologie

¢ Test-Aktor Absturz simulieren wird dazu benutzt, um den Test-Aktor abstiirzen zu

lassen. Nach Eingang des Kommandos SimulateCrashCmd wird auf dem Aktor eine
Ausnahme vom Typ Runt imeExcept ion ausgelost. Uber diese
RuntimeException stiirzt der Aktor ab, wird anschliefSend neu gestartet und stellt
sich wieder her. Bei der Wiederherstellung miissen alle verarbeitenden Events und
Snapshots wieder deserialisiert werden. Daher wird dieser Mechanismus genutzt,
um die Deserialisierung zu testen.

Teildurchlauf: Bearbeiten aller Autos wird dazu benutzt, um den internen Zustand
des Test-Aktors zu modifizieren. Dieser Teildurchlauf bearbeitet eine {iber Parameter
definierte Anzahl von Objekten aus der Klasse Car und ComplexCar. Die
Bearbeitung erfolgt tiber die Events UpdateCarEvt und UpdateComplexCarEvt.
Diese Events werden vor der eigentlichen Zustandsanderung serialisiert. Daher wird
dieser Teildurchlauf genutzt, um die Serialisierung zu testen.

Parameter dieses Experiments

Dieses Experiment lédsst sich mit folgenden Parametern konfigurieren:

22

timeoutInSeconds: Dieser Wert bestimmt die maximale Zeit in Sekunden, die
gewartet wird, bis der Test-Aktor antwortet (zum Beispiel 6000). Der Wert sollte nicht
zu gering gewahlt werden, da die Wiederherstellung des Aktors je nach Parameter
mehr Zeit in Anspruch nimmt.

actorSnapshotInterval: Dieser Wert bestimmt, in welchem Nachrichten-Intervall
der Test-Aktor Snapshots von seinem Zustand macht (mehr dazu im Abschnitt 2.3.2)
(zum Beispiel 10000).

numberOfAdds: Dieser Wert bestimmt die Anzahl von Objekten aus der Klasse Car
und ComplexCar, die beim Teildurchlauf: Anlegen aller Autos angelegt werden (zum
Beispiel 1000).

numberOfUpdates: Dieser Wert bestimmt die Anzahl von Objekten aus der Klasse
Car und ComplexCar, die beim Teildurchlauf: Bearbeiten aller Autos bearbeitet werden
(zum Beispiel 100000).

testCar: Dieser Wert bestimmt, ob mit Objekten aus der Klasse Car beim
Teildurchlauf: Anlegen aller Autos und Teildurchlauf: Bearbeiten aller Autos getestet wird
(zum Beispiel true).

testComplexCar: Dieser Wert bestimmt, ob mit Objekten aus der Klasse
ComplexCar beim Teildurchlauf: Anlegen aller Autos und Teildurchlauf: Bearbeiten aller
Autos getestet wird (zum Beispiel false).

waitForProfilerEnter: Dieser Wert definiert, ob bei Programmestart auf eine
Benutzereingabe (zum Beispiel Entertaste wird gedriickt) gewartet wird (zum Beispiel
false). Das Warten auf eine Benutzereingabe kann sinnvoll sein, wenn zum Beispiel
ein Profiler eingebunden wird.

2.4 Aufbau und Ablauf der Experimente

Die Parameter befinden sich in der Konfigurationsdatei® unter dem Abschnitt
experimentMode.

2.4.2 Experiment E2 Benchmark Umgebung

Dieses Experiment fiihrt {iber ScalaMeter eine Geschwindigkeitsmessung durch und testet
isoliert die SerDes mit Objekten der Klasse AddCarEvt und AddComplexCarEvt. Die
gemessene Zeit wird anschlieffend in Millisekunden ausgegeben.

ScalaMeter unterstiitzt mehrere Arten von Tests. In diesem Experiment wird ein Test mit
einfacher und lokaler Zeitmessung durchgefiihrt. Das Framework bietet die Moglichkeit
eigenstandig Testdaten zu generieren [Scad]. Da diese Moglichkeit aber den Testfall nicht
sinnvoll abbilden kann, wird in diesem Experiment auf eigene generierte Testdaten
zuriickgegriffen (mehr dazu im Abschnitt 2.4).

Um iiber ScalaMeter eine Zeitmessung durchfiihren zu konnen, muss zunéchst ein
Generator fiir die Testdaten angeben werden [Scae] [Scad]. In diesem Fall wurde ein
Generator fiir ganzzahlige Werte (Int) gewdhlt. Dieser wird mit folgenden Eigenschaften
parametrisiert:

* axisName: Dieser Wert definiert den Namen des Generators (zum Beispiel
MyGenerator).

e from: Dieser Wert definiert den Startwert des generierten globalen Bereichs (zum
Beispiel 100).

¢ upto: Dieser Wert definiert den Endwert des generierten globalen Bereichs (zum
Beispiel 1000).

* hop: Dieser Wert definiert die Spriinge zwischen den einzelnen Bereichen (zum
Beispiel 100).

Wenn die Parameter wie folgt belegt werden:

e from: 100
e upto: 300

* hop: 100
werden drei einzelne Bereiche (0-100; 0-200 und 0-300) generiert.

ScalaMeter fiihrt fiir jeden Bereich einen einzelnen Durchlauf durch (im vorherigen Beispiel
also drei Durchldufe) und tibergibt die Werte der einzelnen Bereiche dem einzelnen
Durchlauf. Diese Eigenschaft ist fiir den Ablauf des Experiments nicht zielfithrend, da nur
eine bestimmte Anzahl von Testobjekten getestet werden soll. Daher wurden bei der
Durchfiihrung der Experimente die Parameter from, upto und hop auf den gleichen Wert
gesetzt, um nur einen Durchlauf mit nur einem Bereich zu erzwingen.

8 https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/
src/main/resources/params.conf

23

https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf
https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf

2 Beschreibung Umgebung und Technologie

Beispiel: from = upto = hop = 300 fithrt dazu, dass mit 300 Objekten aus den vorher
generierten Testdaten (siehe Abschnitt 2.4) getestet und die Zeit gemessen wird. Um das zu
ermoglichen, wird fiir jeden ganzzahligen Wert aus diesem generierten Bereich ein
Testobjekt aus den Testdaten genommen. Der ganzzahlige Wert dient dabei als Index fiir den
Zugriff auf die generierten Testdaten.

Fiir jedes Testobjekt (Objekte der Klasse AddCarEvt oder AddComplexCarEvt) wird eine
Serialisierung zu einer Byte-Folge durchgefiihrt. Anschlieffend eine Deserialisierung von der
Byte-Folge zurtick zum Testobjekt.

Jeder Durchlauf wird von ScalaMeter standardmaéfsig 36-mal mit einer Zeitmessung
durchgefiihrt. Anschlieflend wird das Ergebnis gemittelt und ausgegeben. Dies dient dazu,
um ein genaueres Messergebnis zu erhalten. Die ausgebenden Werte liegen in
Millisekunden vor [Scae].

Das Framework fiihrt vor jedem Durchlauf warmup runs durch, bis ein stabiler
Messzustand (mit dem Namen Steady-state) erreicht wird [Scac]. Erst wenn dieser
Zustand erreicht wird, werden die eigentlichen Test-Durchldufe durchgefiihrt. Dies dient
auch dazu, die Messschwankungen (siehe Abschnitt 2.4) zu reduzieren.

Implementierung dieses Experiments

Das nicht-vollstandige Klassendiagramm (Abbildung 2.6) zeigt den relevanten Teil der
Implementierung;:

¢ Jeder SerDes wird durch einen einzelnen Test (JavaTest, JsonTest und
ProtobufTest) getestet.

¢ Jeder dieser einzelnen Tests erbt von der abstrakten Klasse AbstractTest, in der die
eigentlichen Tests implementiert sind.

¢ Die einzelnen Tests unterscheiden sich nur in der Verwendung unterschiedlicher
SerDes.

e Die Funktion triggerSingleSerializeAndDeserialize (i: Int) wird fir
jeden ganzzahligen Wert aus dem von ScalaMeter generierten Testbereich (zum
Beispiel 0-100) aufgerufen. Diese Funktion holt sich zunéchst iiber den Wert des
Parameters i als Index ein Objekt aus den Testdatenobjekten. Dieses Objekt wird
anschliefSend (tiber die Funktion serializeAddCarEvt (value: AddCarEvt)
bzw. serializeAddComplexCarEvt (value: AddComplexCarEvt)) serialisiert
und abschliefSend (tiber die Funktion
deserializeAddCarEvt (value: AddCarEvt) bzw.
deserializeAddComplexCarEvt (value: AddComplexCarEvt)) deserialisiert.

24

2.4 Aufbau und Ablauf der Experimente

AbstractTest
Jabstract}

senalizer: AbstractSerializer

[-]

- triggerSingleSerializeAndDeserialize(i: Int): Unit

- serializeAddCarEvtivalue: AddCarEwvt): Array[Byte]
- deserializeAddCarEviivalue: Array[Byte]): AddCarEwvt

- serializeAddComplexCarEviivalue: AddComplexCarEvt): Array[Byte]
- deserializeAddComplexCarEvi(value: Array[Byie]): AddComplexCarEwt

[-..]

N

JavaTest

JsonTest

ProtobufTest

senalizer: AbstractSerializer

[-]

senalizer: AbstractSerializer

[-]

seralizer: AbstractSerializer

[.]

[.]

I
|
(=TT
I

AV

I
|
(=TT
I

AV

I
|
| g
I

AV

JavaSerializer

JsonSerializer

ProtobufSerializer

Abbildung 2.6 Klassendiagramm von Experiment E2 Benchmark Umgebung

25

2 Beschreibung Umgebung und Technologie

Parameter dieses Experiments

Dieses Experiment ldsst sich mit folgenden Parametern konfigurieren:

* numberOfSingleTests: Dieser Wert bestimmt die Anzahl der getesteten Objekte
aus den Testdaten (zum Beispiel 100). Der Wert sollte hoher als die Anzahl der
Testdaten sein.

* testCar: Dieser Wert bestimmt, ob mit Objekten aus der Klasse AddCarEvt getestet
wird (zum Beispiel t rue).

* testComplexCar: Dieser Wert bestimmt, ob mit Objekten aus der Klasse
AddComplexCarEvt getestet wird (zum Beispiel false).

Die Parameter befinden sich in der Konfigurationsdatei’ unter dem Abschnitt
benchmarkMode.

9 https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/
src/main/resources/params.conf

26

https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf
https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf

3 Serialisierer/De-Serialisierer im Akka
Persistence Umfeld

Dieses Kapitel setzt voraus, dass sich der Leser mit Akka Actors (Abschnitt 2.3.1) und Akka
Persistence (Abschnitt 2.3.2) auseinandergesetzt hat:

¢ Events werden durch Akka Persistence im Journal verwaltet.

* Snapshots werden durch Akka Persistence im Snapshot Storage verwaltet.

Events und Snapshots sind zur Laufzeit Objekte. Um diese Objekte im Journal oder
Snapshot Storage abbilden zu konnen, miissen diese erst iiber einen SerDes zu einer
Byte-Folge serialisiert werden. Um ein Event oder einen Snapshot wieder als Objekt zur
Laufzeit benutzen zu kdonnen, muss dieses erst von einer Byte-Folge iiber einen SerDes
deserialisiert werden.

Verwaltung von Events im Journal

Das Journal wird in Akka Persistence in Form eines Plugins eingebunden [Akka]. Mehr
dazu im Abschnitt 3. Um ein Event im Journal verwalten zu konnen, werden mindestens
folgende Informationen benétigt:

* persistencelId: Dieser Wert wird fiir die Zuordnung der Events fiir einen Aktor
benutzt und sollte daher nicht doppelt vorkommen (zum Beispiel
customer-account-123). Der Wert muss im Aktor vom Entwickler gesetzt
werden (siehe Abschnitt 2.3.2).

* sequenceNumber: Dieser ganzzahlige fortlaufende Wert definiert die Reihenfolge der
Events (zum Beispiel 0). Durch diese Information wird sichergestellt, dass der Aktor
bei der Wiederherstellung die Events chronologisch korrekt abarbeitet (sieche Abschnitt
2.3.2). Dieser Wert wird von Akka Persistence automatisch gesetzt.

* manifest: Dieser Wert reprasentiert die Klassenzuordnung der Events als
Zeichenkette (zum Beispiel AddCarEvt). Uber diese Information kann der SerDes
unterscheiden, um welche Klasse es sich bei dem Event beim Deserialisieren handelt.
Dieser Wert wird vom SerDes beim Serialisieren gesetzt (mehr dazu im Abschnitt
3).

* payload: Dieser Wert reprasentiert das serialisierte Event als Byte-Folge. Der Wert
wird vom SerDes beim Serialisieren gesetzt.

27

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Verwaltung von Snapshots im Snapshot Storage

Der Snapshot Storage wird in Akka Persistence als Plugin eingebunden [Akka]. Mehr dazu
im Abschnitt 3. Um einen Snapshot im Snapshot Storage verwalten zu kdnnen, werden
mindestens folgende Informationen benétigt:

* persistenceId: Dieser Wert wird fiir die Zuordnung der Snapshots fiir einen Aktor
benutzt und sollte daher nicht doppelt vorkommen (zum Beispiel
customer-account-123). Der Wert muss im Aktor vom Entwickler gesetzt
werden (siehe Abschnitt 2.3.2).

* payload: Dieser Wert reprédsentiert den serialisierten Snapshot als Byte-Folge. Der
Wert wird vom SerDes beim Serialisieren gesetzt.

Hinweis: Eine Information tiber die Klassenzuordnung (iiber zum Beispiel die Information
manifest im Journal) ist an dieser Stelle nicht notwendig, da Akka Persistence nur eine
Scala-Klasse als Snapshot-Klasse akzeptiert.

Unterschiedliche Arten von Serialisierer/De-Serialisierer

Es ist moglich zwei Arten von SerDes in Akka einzubinden [Akkh]:

e Serializer: Diese Art von SerDes setzt die Information manifest im Journal
automatisch. Das Attribut wird hierbei auf den Klassennamen des Events gesetzt.

® SerializerWithStringManifest: Diese Art von SerDes setzt die Information
manifest im Journal nicht automatisch und muss daher vom Entwickler definiert
werden. Diese Art von SerDes wird im Laufe der Arbeit behandelt.

Definieren eigener Serialisierer/De-Serialisierer

In Akka ist es moglich einen eigenen SerDes einzubinden. Dies ist iiber die
Implementierung einer eigenen Klasse (hier SampleSerDes) moglich, die von der
abstrakten Klasse Serializer oder SerializerWithStringManifest erbt [Akkc]:

package de.mb.akka.serializationcomparision.serializer

class SampleSerDes extends SerializerWithStringManifest {

override def identifier: Int = 27272
override def manifest (o: AnyRef): String = 2?27
override def toBinary(o: AnyRef): Array[Byte] = 2?7

override def fromBinary (bytes: Array[Byte], manifest: String): AnyRef
= 2727

}

Hinweis: Einige Punkte wurden in diesem Beispiel nicht implementiert, wie man an 2?2?
erkennen kann, da diese nicht zum aktuellen Verstdndnis beitragen wiirden.

28

e Der Wert identifier definiert die intern verwendete ID fiir Akka und sollte nicht
doppelt vorkommen.

¢ Die Methode manifest (o: AnyRef) : String wird von Akka Persistence benutzt,
um die Information tiber die Klassenzuordnung beim Serialisieren auf die Information
manifest abbilden zu kénnen. Uber diese Information kann der SerDes
unterscheiden, um welche Klasse es sich beim Deserialisieren handelt. Daher sollte die
gleiche Logik in der Funktion toBinary (o: AnyRef): Array[Byte] und
fromBinary (bytes: Array[Byte], manifest: String): AnyRef
implementiert werden.

¢ Die Methode toBinary (o: AnyRef): Array[Byte] wird von Akka Persistence
benutzt, um ein Objekt (o: AnyRef) auf eine Byte-Folge (Array [Byte]) abbilden zu
konnen. Diese Byte-Folge wird auf die Information payload abgebildet.

¢ Die Methode
fromBinary (bytes: Array[Byte], manifest: String): AnyRef) wird
von Akka Persistence benutzt, um eine Byte-Folge (bytes: Array[Byte]) tiber die
Information tiber die Klassenzuordnung (manifest: String) durchfithren zu
konnen.

¢ Dieser Mechanismus wird auch genutzt, um die unterschiedlichen SerDes aus dieser
Arbeit einbinden zu konnen (die Referenzimplementierung kann dem Abschnitt 2.4
entnommen werden).

¢ Nach Implementierung dieser Klasse muss dieser SerDes noch in der Konfiguration
angegeben werden.

Konfiguration: Einbindung der Serialisierer/De-Serialisierer

Standardmaflig verwendet Akka die Java-Standardserialisierung [Akkh]. Diese wird aber
nicht empfohlen, da diese zwischen unterschiedlichen Java-Versionen und Systemen nicht
bindrkompatibel ist [Akkb].

Wenn die Java-Standardserialisierung ohne Warnung beim Programmstart verwenden
werden soll, kann in der Konfigurationsdatei
(src/main/resources/application.conf) die Konfiguration
akka.actor.warn-about-java-serializer-usage auf den Wert false gesetzt
werden.

29

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Die Einbindung eines SerDes erfolgt ebenfalls in der Konfigurationsdatei und sieht wie folgt
aus:

akka.actor {

serializers {
mySerDes =
"de.mb.akka.serializationcomparision.serializer.SampleSerDes"

}

serialization-bindings {
"de.sample.Evt" = mySerDes

}

* Uber die Zuweisung von mySerDes wird ein SerDes eingebunden. Der Wert definiert
den Klassenpfad der verwendeten Klasse, die von der abstrakten Klasse Serializer
oder SerializerWithStringManifest erben muss.

 Uber die Zuweisung von "de.sample.Evt" = mySerDes wird dieser SerDes fiir
Objekte vom Typ de.sample.Evt verwendet.

Konfiguration: Journal- und Snapshot Storage-Plugin

Das Journal und der Snapshot Storage werden als Plugins in Akka eingebunden [Akka]. Es
existieren verschiedene Plugins, die das Journal oder den Snapshot Storage auf verschiedene
Arten von Datenbanken abbilden (zum Beispiel auf eine relationale Datenbank, auf eine
NoSQL-Datenbank oder eine In-Memory-Datenbank). Auf die unterschiedlichen Plugins
wird an dieser Stelle (wie bereits im Abschnitt 1.5 beschrieben) nicht eingegangen, da dies
nicht zum aktuellen Verstindnis beitragen wiirde.

Die Einbindung der Plugins erfolgt ebenfalls in der Konfigurationsdatei und sieht
exemplarisch wie folgt aus:

akka.persistence {
journal.plugin = "akka.persistence. journal.leveldb"
snapshot-store.plugin = "akka.persistence.snapshot-store.local"

¢ Fiir das Journal-Plugin wurde eine LevelDB-Portierung verwendet (mehr dazu im
Abschnitt 2.4).

¢ Fiir das Snapshot Storage-Plugin wurde ein Plugin verwendet, dass die Snapshots im
lokalen Dateisystem verwaltet.

¢ Fiir die Entwicklung ist diese Konfiguration ausreichend. Fiir eine
Produktivumgebung sollte diese aber nicht verwendet werden, weil die Speicherung
der Daten nur temporir erfolgt und die Daten beim Beenden des Programms bereinigt
und damit geloscht werden.

30

Nicht direkt kompatible Deserialisierung tiber einen Umweg

Manchen SerDes bereitet es Probleme, eine Byte-Folge nach Modifikation der
Ursprungsklasse nach Serialisierung wieder direkt Deserialisieren zu konnen. Ein Beispiel
hierfiir findet man im Abschnitt 3.2. Um eine serialisierte Byte-Folge trotzdem noch
verwenden zu konnen, kann sich mit der folgenden exemplarischen Implementierung
beholfen werden:

Hinweis: Die Ursprungsklasse (z.B.: Carv1) wird dabei nicht verdndert, stattdessen wird
eine komplett neue Klasse (z.B.: Carv2) mit den gewiinschten Eigenschaften und ein

unidirektionaler Konverter (von der alten auf die neue Klasse) implementiert.

Das folgende Quellcode-Beispiel zeigt exemplarisch die Klasse CarVv1i:

case class CarVl (
title: String,
horsePower: Int,
color: Int

)

Das folgende Quellcode-Beispiel zeigt exemplarisch die Klasse CarVv2, bei der das Attribut
color nun keine ganze Zahl mehr reprasentiert, sondern eine Zeichenkette:

case class CarV2(
title: String,
horsePower: Int,
color: String

)

Das folgende Quellcode-Beispiel zeigt exemplarisch eine Funktion, die ein Objekt der Klasse
CarV1 zu einem Objekt der Klasse CarVv2 konvertiert:

def convertCar (value: CarVl): CarVz = {
Carv2 (
title = value.title,
horsePower = value.horsePower,
color = value.color match { case 0 => "red" case _ => "blue" }

)

31

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Nun muss diese Logik noch in Akka Persistence eingebunden werden. Das folgende
Quellcode-Beispiel zeigt exemplarisch eine Moglichkeit dafiir:

class ConverterExample extends SerializerWithStringManifest {
import ConverterExample.
override def identifier: Int = 9001
override def manifest (o: AnyRef): String = o match {

case CarVl => "CarV1l"
case CarV2 => "Carv2a"

override def toBinary(o: AnyRef): Array[Byte] = o match {
case obj: CarvVl => 2?7
case obj: Carv2 => 27?7

override def fromBinary (bytes: Array[Byte], manifest: String): AnyRef
= manifest match {
case "Carvl" =>

val obj: CarVl = 2?7
convertCar (obj)

case "Carva" =>

27?7

Hinweis: Einige Punkte (Serialisierungs- und Deserialisierungs-Logik) wurden in diesem
Beispiel nicht implementiert, wie man an ??? erkennen kann, da diese nicht zum aktuellen

Verstdandnis beitragen wiirden.

Durch diese Implementierung wird ein Objekt der Klasse CarVv1 automatisch nach der
Deserialisierung zu einem Objekt der Klasse Carv2 konvertiert. Akka kann nun mit diesen
Objekten arbeiten, ohne dass sich der Entwickler weiter damit beschéftigen muss.

32

3.1 Java Serialisierer/De-Serialisierer (Java-Standardserialisierung)

3.1 Java Serialisierer/De-Serialisierer (Java-Standardserialisierung)

Standardmaflig verwendet Akka die Java-Standardserialisierung. Diese sollte aber nicht
verwendet werden, wie bereits im Abschnitt 3 beschrieben. Die Java-Standardserialisierung
kann auch innerhalb von Scala verwendet werden, wie bereits im Abschnitt 2.4 ersichtlich
wird.

Verwendung

Diese Arbeit geht nicht auf die Logik bzw. Implementierung dieses SerDes ein, wie bereits
im Abschnitt 1.5 beschrieben. In Java lassen sich Objekte tiber verschiedene Ansitze
serialisieren:

¢ Standardserialisierung: Die Objektstruktur und Zustdnde werden in ein binires
Format abgebildet. Dieses Verfahren wird auch als Java Object Serialization (JOS)
bezeichnet [OPE].

¢ XML-Serialisierung iiber JavaBeans Persistence: Das Objekt wird auf ein
XML-Format! abgebildet. Nur Java-Beans-Komponenten kinnen mit diesem Verfahren
serialisiert und deserialisiert werden [OPE].

* XML-Abbildung iiber JAXB: Die Objektstruktur und Zustinde werden iiber JAXB?
auf ein XML-Format abgebildet [OPE].

Hinweis: Diese Arbeit beschaftigt sich mit der Standardserialisierung.

Die Serialisierung erfolgt iiber die Klasse ObjectOutputStream und die Methode
writeObject, wie in dem folgenden Beispiel demonstriert wird:

private def toJavaByteArray(o: Jjava.io.Serializable): Array[Byte] = {

val byteArrayOutputStream : ByteArrayOutputStream = new
ByteArrayOutputStream

val objectOutputStream : ObjectOutputStream = new
ObjectOutputStream (byteArrayOutputStream)

objectOutputStream.writeObject (0)

objectOutputStream.close ()
byteArrayOutputStream.close ()

byteArrayOutputStream.toByteArray

1 https://wiki.selfhtml.org/wiki/XML
2 https://docs.oracle.com/javase/8/docs/technotes/guides/xml/jaxb/index.html

33

https://wiki.selfhtml.org/wiki/XML
https://docs.oracle.com/javase/8/docs/technotes/guides/xml/jaxb/index.html

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Die Deserialisierung erfolgt tiber die Klasse Object InputStream und die Methode
readObject, wie in dem folgenden Beispiel demonstriert wird:

private def fromJavaByteArray[ObjectType] (bytes: Array[Byte])
ObjectType = {

val byteArrayInputStream : ByteArrayInputStream = new
ByteArrayInputStream(bytes)

val objectInputStream : ObjectInputStream = new
ObjectInputStream (byteArrayInputStream)

val ans: ObjectType =
objectInputStream.readObject () .asInstanceOf [ObjectTypel

objectInputStream.close ()
byteArrayInputStream.close ()

ans

Dieser SerDes kann nur Klassen serialisieren bzw. deserialisieren, die von der Schnittstelle
Serializable erben. Falls dies nicht der Fall ist, tritt eine Ausnahme vom Typ
NotSerializableException auf. Diese Schnittstelle enthilt keine Methoden und ist
somit nur eine Markie1rungsschnittstelle3 [OPE].

Ein Beispiel

Exemplarisch wird durch diese Form der Serialisierung aus dem Scala-Objekt

Car (id = 0, name = "BMW F30", horsePower = 200)

diese Byte-Folge:

#m[] srJde.maxbundscherer.akka.serializationcomparision.samplecode.JavaExample$Card ;2¢#Z1[I
horsePowerI[] idL[] namet[] Ljava/lang/String;xp000 OO0Ot0 BMW F3@

Hinweis: Um diese Byte-Folge darzustellen, wurde diese in eine Zeichenkette konvertiert.
Nicht druckbare Zeichen werden nicht abgebildet.

Hinweise

¢ Zum Deserialisieren benotige Klassen miissen unter dem gleichen Klassenpfad
vorliegen wie bei der Serialisierung [JAX]. Dies kann durch manuelles Setzen des
Attributs serialVersionUUID innerhalb der Klassen umgangen werden [Ull14].

¢ Falls das Attribut serialVersionUUID nicht vom Entwickler gesetzt wurde, wird
dieses automatisch tiber das Java-Dienstprogramm serialver?, auf Basis der
Klassendefinition, berechnet [Ull14]. Eine Anderung der Klassendefinition kann also
zu einer verdnderten serialVersionUUID fiihren.

3 https://www.it-visions.de/glossar/alle/3113/Marker_Interface.aspx
4 https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/serialver.html

34

https://www.it-visions.de/glossar/alle/3113/Marker_Interface.aspx
https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/serialver.html

3.2 JSON Serialisierer/De-Serialisierer (Circe)

* Die serialVersionUUID wird vor dem Deserialisieren mit der Klasse abgeglichen.
Falls der Wert nicht tibereinstimmt, wird die Deserialisierung abgebrochen und es tritt
eine Ausnahme auf.

* Die Serialisierung bzw. Deserialisierung ist abhédngig vom verwendeten Softwarestand.
Eine Deserialisierung kann bei unterschiedlichen Softwarestdnden zu Problemen
fihren [JAX]. Da in der Praxis unterschiedliche Softwarestdnde (zum Beispiel nach der
Aktualisierung der JVM) vorkommen, ist diese Form der Serialisierung bzw.
Deserialisierung nicht in einer Produktivumgebung praxistauglich.

¢ Da Akka standardmaflig die Java-Standardserialisierung verwendet, ist keine
zusétzliche Konfiguration oder Einbindung nétig. Es ist darauf zu achten, dass die zu
verarbeitenden Klassen von der Schnittstelle Serializable erben. Case-Klassen
in Scala erfiillen diese Anforderungen automatisch und konnen daher verwendet
werden.

3.2 JSON Serialisierer/De-Serialisierer (Circe)

JSON ist ein Datenaustauschformat, dass fiir den Menschen einfach les- und schreibbar ist.
Fiir Maschinen ist dieses Format einfach zu parsen und zu generieren, da die Analyse der
Datenstruktur nicht aufwendig ist [JSO].

Es basiert auf einer Untermenge der Programmiersprache JavaScript. JSON ist unabhéingig
von der verwendeten Programmiersprache. Dadurch findet dieses Format eine hohe
Verbreitung in der Speicherung von Daten und im Datenaustausch [JSO].

Das Format JSON verglichen mit Scala

JSON wurde im Jahr 1999 in ECMA-262 dritte Edition standardisiert und sieht
exemplarisch wie folgt aus:

{

"age" : 5,
"name" : "MyData",
"tagsll : [lltagoll’ "tagl", 'ltagN"]

}

Dieses Beispiel zeigt die beiden Strukturen, auf welchen JSON basiert (vgl. [JSO]), auf:

* Name/Wert Paare: In Scala wiirde diese Struktur zum Beispiel als Map reprasentiert
werden.

* Eine geordnete Liste von Werten: In Scala wiirde diese Struktur zum Beispiel als
Array oder List reprdsentiert werden.

35

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Implementierung durch Circe

Diese Arbeit geht nicht auf die Logik bzw. Implementierung dieses SerDes ein, wie bereits
im Abschnitt 1.5 beschrieben. Die reine Serialisierungs- und Deserialisierungs-Logik wird
durch die Bibliothek Circe® implementiert (mehr dazu im Abschnitt 2.4) und iiber einen
eigenen SerDes mithilfe der Klasse JsonSerializer eingebunden (mehr dazu im
Abschnitt 3). Circe wurde aus folgenden Griinden als Vertreter eines JSON-SerDes gewahlt:

¢ Hohe Anzahl an beteiligten Entwicklern (iiber 145) (vgl. [GITa])
¢ Hohe Anzahl an Quellcode-Beitragen (iiber 1.700) (vgl. [GITa])
¢ Viele und einschldgige Projekte verwenden diese Implementierung (vgl. [GITa])

¢ Direkt in Scala ohne Adapter verwendbar

Ein Beispiel

Exemplarisch wird durch diese Form der Serialisierung aus dem Scala-Objekt

Car(id = 0, name = "BMW F30", horsePower = 200)

folgende JSON-Ausgabe:

{

"id" : 0,
"name" : "BMW F30",
"horsePower" : 200
t
Hinweise

¢ Circe serialisiert ein Objekt abstrahiert zu einem Objekt der Klasse JSON. Diese Klasse
bietet die Moglichkeit tiber die Methode toString () : String die eigentliche
JSON-Ausgabe als Zeichenkette zu repriasentieren. Diese Zeichenkette kann durch, die
in Java bereitgestellte Methode byte [] getBytes (String charsetName) zu
einer Byte-Folge iiber einen definierten Zeichensatz konvertiert werden. Bei der
Deserialisierung sollte die Umkehrung mit dem gleichen Zeichensatz durchgefiihrt
werden, um Kompatibilitdtsprobleme zu vermeiden.

e Circe bereitet es Probleme, die JSON-Ausgabe nach Modifikation der Ursprungsklasse
nach Serialisierung wieder interpretieren zu konnen. Das ist daraus resultierend, dass
JSON geparst wird und zum Beispiel eine Anderung des Namens eines Attributs nicht
erkennt. Abhilfe bei dieser Problemstellung schafft der Umweg aus Abschnitt 3.

5 siehe https://github.com/circe/circe

36

https://github.com/circe/circe

3.3 Google Protocol Buffers Serialisierer/De-Serialisierer (ScalaPB)

3.3 Google Protocol Buffers Serialisierer/De-Serialisierer (ScalaPB)

Protobuf ist ein bindres Datenformat mit einer eigenen Schnittstellen-Beschreibungssprache,
entwickelt von der Firma Google. Protobuf ist unabhédngig von der verwendeten
Programmiersprache. Derzeit werden offiziell folgende Sprache unterstiitzt [GOO]:

Java (damit auch in Scala - sieche Abschnitt 2.4)
¢ Python

¢ Objective-C

o C++

¢ Dart (erst ab Protobuf-Version 3)

¢ Go (erst ab Protobuf-Version 3)

* Ruby (erst ab Protobuf-Version 3)

e C# (erst ab Protobuf-Version 3)

Verwendung

1. Bei der Verwendung von Protobuf wird zunéchst die Struktur der Daten definiert.
Diese Definition wird als Schnittstellen-Beschreibung genutzt.

2. Diese Schnittstellen-Beschreibung wird von einem Protobuf-Compiler, zum Beispiel in
Form einer Klasse, in eine Zielprogrammiersprache tibersetzt.

3. Dem Entwickler stehen nun durch die generierten Klassen, Methoden zum

Serialisieren und Deserialisieren zur Verfiigung.

Schnittstellen-Beschreibung und Scala

Die Struktur der Daten wird innerhalb einer . proto-Datei definiert. Eine Definition wird
hier exemplarisch aufgezeigt:

message CarDb {
int32 id = 1;
int32 horsepower = 2;
string name = 3;

}

® message CarDb: Definiert den Klassennamen in Scala
(case class CarDB(...)).

* int32 id = 1:Deklariert ein Attribut in Scala (id: Int). int32 gibt hierbei den
Datentyp des Attributs an. = 1 weist dieses Attribut einer Protobuf-Feldnummer zu.
Diese Nummer sollte innerhalb einer Klasse nicht doppelt vorkommen und wird fiir
die interne Verarbeitung beim Serialisieren und Deserialisieren benétigt.

37

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Implementierung durch ScalaPB

Diese Arbeit geht nicht auf die Logik bzw. Implementierung dieses SerDes ein, wie bereits
im Abschnitt 1.5 beschrieben. Diese Arbeit verwendet den Protobuf-Compiler ScalaPB®.
ScalaPB wurde aus folgenden Griinden als Vertreter eines Protobuf-Compilers fiir Scala
gewdhlt:

¢ Die Recherche nach einem Protobuf-Compiler fiir Scala lieferte nur zwei sinnvolle
Ergebnisse (ScalaPB und protoless’). Die Entwicklung von ScalaPB hat im Vergleich zu
protoless eine wesentlich hohere Beteiligung (42 Entwickler zu einem Entwickler).

¢ ScalaPB lasst sich direkt in SBT als Plugin einbinden und wird vor dem Kompilieren
des Scala-Quellcodes angestofien.

ScalaPB stellt nach dem Kompilieren Scala-Klassen mit diversen Methoden fiir die
Serialisierung und Deserialisierung bereit:

* .toByteArray: Diese Methode serialisiert ein Objekt zu einer Byte-Folge.

* .parseFrom: Diese Methode deserialisiert eine Byte-Folge zu einem Objekt. Bei
dieser Methode handelt es sich nicht um eine statische Methode, d.h. es muss erst ein
konkretes Objekt erzeugt werden, um diese zu verwenden. Alle Attribute dieses
Objekts werden mit null initialisiert, was fiir einen Scala-Entwickler untiblich ist. Erst
durch den Aufruf der Methode wird das Objekt mit sinnvollen Daten befiillt.

* .getField: Diese Methode deserialisiert ein einzelnes Attribut aus einer Byte-Folge.

Hinweis: Die Aufzdhlung ist nicht vollstandig.

Ein Beispiel

Exemplarisch wird durch die Protobuf-Serialisierung aus dem Scala-Objekt

CarDb (id = 0, name = "BMW F30", horsepower = 200)

diese Byte-Folge:
BMW F30

Hinweis: Um diese Byte-Folge darzustellen, wurde diese in eine Zeichenkette konvertiert.
Nicht druckbare Zeichen werden nicht abgebildet.

6 siehe https://github.com/scalapb/ScalaPB
7 siehe https://github.com/julien-lafont/protoless

38

https://github.com/scalapb/ScalaPB
https://github.com/julien-lafont/protoless

3.3 Google Protocol Buffers Serialisierer/De-Serialisierer (ScalaPB)

Hinweise

Die durch dieses Verfahren serialisierten Objekte konnen auch nach einer Verdnderung
der Protobuf-Beschreibung wieder deserialisiert werden (mehr dazu im Abschnitt 3.3).

Diese Arbeit geht auf proto3 ein und nicht auf den Vorgénger (proto2) (mehr dazu
im Abschnitt 1.5). Das Schliisselwort required steht in prot o3 nicht mehr zur
Verfiigung. Dadurch kann in Scala nicht mehr direkt ein optionales Attribut (zum
Beispiel Option[Int]) abgebildet werden.

Die grundlegende Protobuf-Beschreibungssprache kann durch zusétzliche
Bibliotheken erweitert werden. So ist es zum Beispiel moglich, iiber die Bibliothek
google/protobuf/wrappers.proto ein optionales Attribut (iiber
google.protobuf.Int32Value auf Option[Int]) abbilden zu konnen. Falls das
Attribut bei einer in der Vergangenheit serialisierten Byte-Folge nicht abgebildet
wurde, wird das Attribut nicht mit dem Wert None deserialisiert, sondern mit dem
Wert null.

Klassen, die durch ScalaPB erzeugt worden sind, bieten passende Schnittstellen an, die
mit der Akka-internen Protobuf-Integration kompatibel sind. Daher reicht es aus,
wenn ein SerDes unter akka.remote.serialization.ProtobufSerializer
bekannt gemacht und den zu verarbeitenden Klassen zugewiesen wird (siehe
Abschnitt 3).

Akka selbst verwendet Protobuf, um Nachrichten zwischen Aktoren serialisieren bzw.
deserialisieren zu konnen [Akkh]. Wenn eine Nachrichten nicht als Protobuf
kompatible Klasse vorliegt, muss diese erst zu einer Byte-Folge serialisiert und in ein
Protobuf kompatibles Objekt tibertragen werden. Dieser Schritt kann eingespart
werden, wenn Klassen aus ScalaPB verwendet werden.

Abwirtskompatible Deserialisierung in Protobuf

Die durch Protobuf serialisierten Objekte konnen auch nach einer Verdnderung der
Protobuf-Beschreibung wieder deserialisiert werden. In der Praxis kann dies zu Konflikten
(zum Beispiel eine Anderung des Datentyps eines Attributs von Float auf Double) fiihren,
da die Byte-Folge nicht mehr korrekt deserialisiert werden kann. Um das Risiko eines
Konflikts zu reduzieren, konnen folgende Empfehlungen beachtet werden:

Protobuf-Feldnummern diirfen innerhalb einer Klasse nicht mehrfach vergeben
werden.

Der Datentyp eines Attributs sollte nicht nachtraglich gedndert werden. Falls das
Attribut bei einer in der Vergangenheit serialisierten Byte-Folge anders abgebildet
worden ist, scheitert die Deserialisierung.

Bei Entfernung eines Attributs aus einer Klasse sollte dieses nicht geldscht, sondern
nur auskommentiert werden. Dadurch wird die Gefahr einer doppelten und damit
falschen Feldnummern-Zuweisung durch zum Beispiel einen anderen Entwickler
reduziert.

Es sollten keine Protobuf-Attribute (trotz gleicher Protobuf-Feldnummer) umbenannt
werden, da diese sonst beim Deserialisieren nicht immer richtig interpretiert werden.

39

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

¢ Bei der Verwendung des Schliisselworts repeated (in Scala als Vector abgebildet)
ist Vorsicht geboten. Falls das Attribut bei einer in der Vergangenheit serialisierten
Byte-Folge nicht abgebildet worden ist, wird das Attribut nicht mit dem Wert
Vector.empty deserialisiert, sondern mit dem Wert null.

* Bei der Verwendung von Attributen vom Typ Boolean ist ebenfalls Vorsicht geboten.
Falls das Attribut bei einer in der Vergangenheit serialisierten Byte-Folge nicht
abgebildet worden ist, wird das Attribut nicht mit dem Wert null deserialisiert,
sondern mit dem Wert false.

40

4 Fazit

Um die Schnelligkeit und Praxistauglichkeit (siehe Definitionen im Abschnitt 1.4) der
SerDes zu eruieren, wurden zwei Experimente konzipiert:

¢ Experiment E1 Vollstindige Umgebung: Dieses Experiment wurde entwickelt, um die
ausgewdhlten SerDes in einem vollstandigen Umfeld zu testen. Ein vollstandiges
Umfeld stellt einen minimalen Akka Persistence Aufbau mit einem
Test-Aktorensystem und mit einem Test-Aktor dar. Das Experiment und das
vollstindige Umfeld werden im Abschnitt 2.4.1 beschrieben.

¢ Experiment E2 Benchmark Umgebung: Dieses Experiment testet isoliert die
ausgewdhlten SerDes beziiglich Geschwindigkeit tiber ScalaMeter. Das Experiment
wird im Abschnitt 2.4.2 beschrieben.

Diese Experimente wurden auf drei verschiedenen Referenzsystemen durchgefiihrt:
* Referenzsystem R1 Windows 10

* Referenzsystem R2 iMac

* Referenzsystem R3 AWS EC2
Ausziige der Eigenschaften der Referenzsysteme konnen dem Abschnitt A.1 entnommen
werden.
4.1 Ergebnisse aus den Durchfiihrungen der Experimente
Es wurden folgende Durchfiihrungen durchgefiihrt:
1. D1 von E1 und E2 auf Referenzsystem R1 Windows 10
2. D1 von E1 und E2 auf Referenzsystem R2 iMac

3. D1 von E1 und E2 auf Referenzsystem R3 AWS EC2

4. D2 von E1 und E2 auf Referenzsystem R3 AWS EC2

Alle gesetzten Test-Parameter, sowie die vollstandigen Ergebnisse und Visualisierungen
konnen dem Abschnitt A.3 entnommen werden.

Hinweis: Da die Testdaten vor jedem Lauf (vor der Durchfithrung von E1 und E2)

automatisch generiert werden (mehr dazu im Abschnitt 2.4), ist ein globaler Vergleich nicht
moglich.

41

4 Fazit

D1 von E1 und E2 auf Referenzsystem R1 Windows 10

Die Ergebnisse werden in Abbildung A.1 visualisiert. Bei dieser Durchfiihrung wurden E1
und E2 3-mal getestet:

Datum E1l Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
Avg. 3200s 3227s 3044s 891ms 243ms 20ms
Med. 3187s 3191s 3059s 889ms 247ms 20ms

Um mehr Ressourcen (zum Beispiel Arbeitsspeicher) auf dem Zielsystem nutzen zu kénnen
(mehr dazu im Abschnitt 2.4), wurde SBT wie folgt parametrisiert:
export SBT_OPTS="-Xms4G —-Xmx10G".

¢ Die einzelnen Ergebnisse aus E1 unterliegen starken Messschwankungen (mehr dazu
im Abschnitt 2.4). Ein Vergleich ist bei dieser Durchfiihrung nicht aussagekriftig. Eine
Vergrofserung der Testmenge war auf diesem Referenzsystem nicht moglich, da nicht
genug Ressourcen (Arbeitsspeicher) zur Verfiigung standen.

¢ Die Ergebnisse aus E2 sind aussagekraftig und ermoglichen es, die verschiedenen
SerDes beziiglich Schnelligkeit gegeniiberzustellen.

D1 von E1 und E2 auf Referenzsystem R2 iMac

Die Ergebnisse werden in Abbildung A.2 visualisiert. Bei dieser Durchfiihrung wurden E1
und E2 12-mal getestet:

Datum El Java E1 Circe El ScalaPB E2 Java E2 Circe E2 ScalaPB
Avg. 2225s 2703s 2270s 292ms 163ms 22ms
Med. 2229s 2696s 2270s 292ms 162ms 19ms

Um mehr Ressourcen (zum Beispiel Arbeitsspeicher) auf dem Zielsystem nutzen zu kénnen
(mehr dazu im Abschnitt 2.4), wurde SBT wie folgt parametrisiert:
export SBT_OPTS="-Xms4G —-Xmx13G".

* Die einzelnen Ergebnisse aus E1 unterliegen starken Messschwankungen (mehr dazu
im Abschnitt 2.4). Ein Vergleich ist bei dieser Durchfiihrung nicht aussagekriftig. Eine
Vergrofierung der Testmenge war auf diesem Referenzsystem nicht moglich, da nicht
genug Ressourcen (Arbeitsspeicher) zur Verfiigung standen.

¢ Die Ergebnisse aus E2 sind aussagekréftig und ermoglichen es, die verschiedenen
SerDes beziiglich Schnelligkeit gegeniiberzustellen.
D1 von E1 und E2 auf Referenzsystem R3 AWS EC2

Die Ergebnisse werden in Abbildung A.3 visualisiert. Bei dieser Durchfiihrung wurden E1
und E2 2-mal getestet:

Datum E1l Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
Avg. 2902s 2013s 2765s 768ms 236ms 31ms
Med. 2902s 2013s 2765s 768ms 236ms 31ms

42

4.2 Schnelligkeit der Serialisierer/De-Serialisierer

Um mehr Ressourcen (zum Beispiel Arbeitsspeicher) auf dem Zielsystem nutzen zu kénnen
(mehr dazu im Abschnitt 2.4), wurde SBT wie folgt parametrisiert:
export SBT_OPTS="-Xms4G —-Xmx14G".

¢ Die einzelnen Ergebnisse aus E1 unterliegen starken Messschwankungen (mehr dazu
im Abschnitt 2.4). Ein Vergleich ist bei dieser Durchfiihrung nicht aussagekréftig. Eine
Vergrofierung der Testmenge war auf diesem Referenzsystem moglich (siehe D2).

* Die Ergebnisse aus E2 sind aussagekréftig und ermoglichen es, die verschiedenen
SerDes beziiglich Schnelligkeit gegeniiberzustellen.
D2 von E1 und E2 auf Referenzsystem R3 AWS EC2

Die Ergebnisse werden in Abbildung A .4 visualisiert. Bei dieser Durchfiihrung wurden E1
und E2 2-mal getestet:

Datum E1l Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
Avg. 28282s 23486s 20238s 3861ms 1085ms 156ms
Med. 28282s 23486s 20238s 3861ms 1085ms 156ms

Um mehr Ressourcen (zum Beispiel Arbeitsspeicher) auf dem Zielsystem nutzen zu kénnen
(mehr dazu im Abschnitt 2.4), wurde SBT wie folgt parametrisiert:
export SBT_OPTS="-Xms4G —-Xmx14G".

¢ Durch die Vergrofierung der Testmenge war es moglich, die Messschwankungen zu
reduzieren. Die Ergebnisse aus E1 sind daher aussagekréftig und erméglichen es, die
verschiedenen SerDes beziiglich Schnelligkeit gegeniiberzustellen.

* Die Ergebnisse aus E2 sind aussagekréftig und ermoglichen es, die verschiedenen
SerDes beziiglich Schnelligkeit gegeniiberzustellen.

4.2 Schnelligkeit der Serialisierer/De-Serialisierer

Bereits der Abschnitt 4.1 zeigte, dass es nicht einfach ist, aussagekréftige Ergebnisse zu
erhalten:

Durchfithrung Referenzsystem El aussagekriftig E2 aussagekriftig
D1 Referenzsystem nein ja
R1 Windows 10
D1 Referenzsystem nein ja
R2 iMac
D1 Referenzsystem nein ja
R3 AWS EC2
D2 Referenzsystem ja ja
R3 AWS EC2

43

4 Fazit

Erst durch eine starke Vergrofierung der Testmenge mit

* numberOfUpdates = 1000000 (D1 auf Referenzsystem R3 AWS EC2) auf

e numberOfUpdates 5000000 (D2 auf Referenzsystem R3 AWS EC2)

konnte auch ein aussagekriftiges Ergebnis von der Durchfithrung von E1 ermittelt werden.

Die Durchfiithrungen von E2 lieferten immer aussagekréftige Ergebnisse. Wenn man die
einzelnen SerDes isoliert miteinander vergleicht, ist es sinnvoll diese beziiglich Schnelligkeit
gegeniiberzustellen.

Schlussfolgernd

¢ Da viele Faktoren zu starken Messschwankungen (siehe Abschnitt 2.4) fiihren, ist es
nicht einfach, die gewdhlten SerDes beziiglich Schnelligkeit miteinander zu
vergleichen.

* Erst durch eine starke Vergroflerung der Testmenge konnte ein aussagekraftiges
Ergebnis provoziert werden. Eine solch grofie sequentielle Verarbeitungsmenge ist in
der Praxis selten vertreten. Die reine Serialisierung und Deserialisierung nimmt in
einer Akka Persistence Umgebung nur wenig Laufzeit in Anspruch. Daher ist es
sinnvoll, das gesamte System beziiglich Schnelligkeit erst an anderen Stellen (zum
Beispiel durch das Austauschen von Sortieralgorithmen oder das Einbauen von
schnellerer Hardware) zu optimieren.

* Soll das System aber an dieser Stelle optimiert werden, konnen die SerDes isoliert (wie
in E2 gezeigt) miteinander beziiglich Geschwindigkeit verglichen werden.

4.3 Praxistauglichkeit der Serialisierer/De-Serialisierer

Praxistauglichkeit! ist nicht direkt messbar und hingt stark vom Anwendungsfall ab. Diese
Arbeit geht von einem einfachen Anwendungsfall aus:

¢ Das System verwaltet Daten konsistent.

¢ Das System sollte auch nach Neustart seinen letzten Zustand vollstindig
wiederherstellen konnen.

* Das System wird im Laufe des Softwarelebenszyklus modifiziert. Daten, die nicht
mehr zu dem neuen System passen, miissen aber dennoch korrekt verarbeitet werden.

Aus diesem Anwendungsfall lassen sich exemplarisch folgende Anforderungen an den
SerDes ableiten:

¢ Anforderung 1: Korrektes Deserialisieren von Byte-Folgen auch nach Verdnderung
der Ursprungsklasse nach dem Serialisieren;

* Anforderung 2: Geringer Konfigurationsaufwand fiir einen Entwickler;

1 siehe Definition im Abschnitt 1.4

44

4.3 Praxistauglichkeit der Serialisierer/De-Serialisierer

¢ Anforderung 3: Geringer Aufwand bei der Fehlersuche fiir einen Entwickler.

Durch diese Anforderungen lassen sich die SerDes in diesem Umfeld miteinander
vergleichen.

Vergleich nach Anforderung 1

¢ Java-Standardserialisierung: Diese Form der Serialisierung/Deserialisierung ist nicht
praxistauglich, da diese zum Beispiel keine korrekte Deserialisierung auch nach
Verdanderung der Ursprungsklasse nach dem Serialisieren garantieren kann (mehr
dazu im Abschnitt 3.1). Dies ist zwar {iber einen Umweg (mehr dazu im Abschnitt 3)
moglich, wirkt sich aber negativ auf die Anforderung 2 und 3 aus.

* JSON-Serialisierung durch Circe: Diese Form der Serialisierung/Deserialisierung ist
nicht praxistauglich, da diese zum Beispiel keine korrekte Deserialisierung auch nach
Verdanderung der Ursprungsklasse nach dem Serialisieren garantieren kann (mehr
dazu im Abschnitt 3.2). Dies ist zwar {iber einen Umweg (mehr dazu im Abschnitt 3)
moglich, wirkt sich aber negativ auf die Anforderung 2 und 3 aus.

¢ Protobuf-Serialisierung durch ScalaPB: Diese Form der
Serialisierung/Deserialisierung ist praxistauglich, da diese zum Beispiel eine korrekte
Deserialisierung auch nach Verdnderung der Ursprungsklasse nach dem Serialisieren
garantieren kann. Es gelten jedoch Einschrankungen, die im Abschnitt 3.3 beschrieben
werden.

Bei dieser Gegentiberstellung siegt die Protobuf-Serialisierung durch ScalaPB.

Vergleich nach Anforderung 2

¢ Java-Standardserialisierung: Diese Form der Serialisierung/Deserialisierung muss
nicht explizit konfiguriert werden, da diese standardmaflig verwendet wird (mehr
dazu im Abschnitt 3). Um eine korrekte Deserialisierung auch nach Verdnderung der
Ursprungsklasse nach dem Serialisieren ermoglichen zu konnen, muss sich mit einem
Umweg (siehe Abschnitt 3) beholfen werden.

* JSON-Serialisierung durch Circe: Diese Form der Serialisierung/Deserialisierung
kann nicht direkt verwendet werden und muss iiber einen eigenen SerDes in Form
einer Klasse eingebunden und in der Konfigurationsdatei angegeben werden (mehr
dazu im Abschnitt 3). Um eine korrekte Deserialisierung auch nach Verdnderung der
Ursprungsklasse nach dem Serialisieren ermoglichen zu konnen, muss sich mit einem
Umweg (sieche Abschnitt 3) beholfen werden.

* Protobuf-Serialisierung durch ScalaPB: Diese Form der
Serialisierung/Deserialisierung wird in Akka Persistence automatisch unterstiitzt, da
Akka selbst Protobuf benutzt, um Nachrichten zwischen Aktoren serialisieren bzw.

deserialisieren zu kénnen. Daher ist die Konfiguration nicht aufwiandig (mehr dazu im
Abschnitt 3.3).

Bei dieser Gegentiberstellung siegt die Protobuf-Serialisierung durch ScalaPB.

45

4 Fazit

Vergleich nach Anforderung 3

¢ Java-Standardserialisierung: Das Produkt dieser Serialisierung ist nicht vom

Menschen lesbar. Fehler, die durch diese Serialisierung entstehen, kénnen nicht
einfach gefunden und behoben werden.

JSON-Serialisierung durch Circe: Das Produkt dieser Serialisierung ist vom
Menschen lesbar. Fehler, die durch diese Serialisierung entstehen, konnen einfach
gefunden und behoben werden.

Protobuf-Serialisierung durch ScalaPB: Das Produkt dieser Serialisierung ist nicht
vom Menschen lesbar. Fehler, die durch diese Serialisierung entstehen, konnen nicht
einfach gefunden und behoben werden.

Bei dieser Gegeniiberstellung siegt die JSON-Serialisierung durch Circe.

Schlussfolgernd

46

Die Praxistauglichkeit ist nicht direkt messbar und hangt stark vom Anwendungsfall
ab.

Erst durch den Anwendungsfall und die daraus abgeleiteten Anforderungen an den
SerDes, konnen diese mit einander verglichen werden.

Die Java-Standardserialisierung eignet sich gut fiir die lokale Entwicklung, da nichts
extra konfiguriert werden muss. Diese Form der Serialisierung bzw. Deserialisierung
sollte nicht in einer Produktivumgebung verwendet werden.

Die JSON-Serialisierung durch Circe eignet sich fiir die lokale Entwicklung, da das
Produkt der Serialisierung vom Menschen lesbar ist. Das kann bei der Fehlersuche
helfen. Diese Form der Serialisierung bzw. Deserialisierung kann in einer
Produktivumgebung verwendet werden.

Die Protobuf-Serialisierung durch ScalaPB eignet sich, auf Grund zahlreicher Vorteile
(mehr dazu im Abschnitt 3.3), fiir eine Produktivumgebung.

A Anhange

A.1 Auszlge aus den Eigenschaften der Referenzsysteme

Auszug der Eigenschaften des Referenzsystem R1 Windows 10

Name der Eigenschaft Wert der Eigenschaft
Betriebssystem Windows 10 Pro

Architektur: 64-Bit

Prozessorbezeichnung;: Intel(R) Core(TM) i7-2600 3.40 GHz
Prozessor Anzahl der Kerne: 4

Arbeitsspeicher: 12 GB

Festplatte Art: HDD

Auszug der Eigenschaften des Referenzsystem R2 illac

Name der Eigenschaft Wert der Eigenschaft
Bezeichnung: iMac (21,5", Ende 2013)
Betriebssystem macOS Sierra Version 10.12.6
Architektur: 64-Bit
Prozessorbezeichnung;: 2,7 GHz Intel Core i5
Prozessor Anzahl der Kerne: 4

Arbeitsspeicher: 16 GB 1600 MHz DDR3
Festplatte Art: SSD

Auszug der Eigenschaften des Referenzsystem R3 AWS EC2

Name der Eigenschaft Wert der Eigenschaft
EC2-Image-Bezeichnung: ami-0bdf93799014acdc4
EC2-Instanz-Bezeichnung;: t2.xlarge

Betriebssystem: Ubuntu Server 18.04 LTS (HVM)
Architektur: 64-Bit

Prozessor Anzahl der Kerne: 4

Arbeitsspeicher: 16 GB

Festplatte Art: SSD

47

A Anhiinge

A.2 Versionen der verwendeten Komponenten

Bezeichnung Version

Java JDK! 8

Scala® 2.12.7

Sbt3 1.2.6

Akka Actors* 2.5.18

Akka Persistence® 2.5.18

Circe® 0.10.0

LevelDB JNI” 1.8

Port of LevelDB to Java® 0.7

ScalaMeter’ 0.8.2

ScalaPB!? 0.8.1
lhttps://www.oracle.com/technetwork/java/javase/
nttps://www.scala-lang.org/
3https://www.scala-sbt.org/
4https://doc.akka.io/docs/akka/2.5/actors.html
Shttps://doc.akka.io/docs/akka/2.5/persistence.html
®nttps://circe.github.io/circe/

7https:
8https:
9https:

//github.com/fusesource/leveldbjni
//github.com/dain/leveldb
//scalameter.github.io/

O https://github.com/scalapb/ScalaPB

Die verwendenden Komponenten werden im Abschnitt 2.4 beschrieben.

48

https://www.oracle.com/technetwork/java/javase/
https://www.scala-lang.org/
https://www.scala-sbt.org/
https://doc.akka.io/docs/akka/2.5/actors.html
https://doc.akka.io/docs/akka/2.5/persistence.html
https://circe.github.io/circe/
https://github.com/fusesource/leveldbjni
https://github.com/dain/leveldb
https://scalameter.github.io/
https://github.com/scalapb/ScalaPB

A.3 Ergebnisse aus den Durchfiihrungen der Experimente

A.3 Ergebnisse aus den Durchfiihrungen der Experimente

Ergebnisse aus den Experimenten Referenzsystem R1 Windows 10

54,5
54
53,5
53
52,5
52
51,5
51
50,5
50
49,5
49

El

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Elinm

W Java ECirce M ScalaPB

W Java W Circe M ScalaPB

E2

E2ins

Abbildung A.1 Visualisierung der Ergebnisse Durchfiihrung 1 (Referenzsystem R1 Windows 10)

Datum E1l Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
02.02.2019 3164s 3191s 3059s 889ms 265ms 20ms
02.02.2019 3250s 3330s 3072s 900ms 216ms 19ms
03.02.2019 3187s 3160s 3001s 883ms 247ms 20ms
Avg. 3200s 3227s 3044s 891ms 243ms 20ms
Med. 3187s 3191s 3059s 889ms 247ms 20ms

Die Daten aus der Tabelle werden in der Abbildung A.1 visualisiert. Die Zahlen wurden
kaufméannisch ohne Nachkommastellen gerundet. Die Testparameter lauteten:

Konfiguration Name Wert
testSet numberOfTestCars 100000
testSet carNameStringMaxLength 200
testSet complexCarNotesStringMaxLength 900
experimentMode timeoutInSeconds 60000
experimentMode actorSnapshotInterval 100000
experimentMode numberOfAdds 100000
experimentMode numberOfUpdates 5000000
experimentMode testCar wahr
experimentMode testComplexCar wahr
experimentMode waitForProfilerEnter falsch
benchmarkMode numberOfSingleTests 10000
benchmarkMode testCar wahr
benchmarkMode testComplexCar wahr

49

A Anhiinge

Ergebnisse aus den Experimenten Referenzsystem R2 ilMac

50
45
40
35
30
25
20
15
10

M Java M Circe M ScalaPB

El

Elinm

0,05

E2

E2ins

M Java M Circe M ScalaPB

Abbildung A.2 Visualisierung der Ergebnisse Durchfiihrung 1 (Referenzsystem R2 iMac)

Datum El Java E1 Circe El ScalaPB E2 Java E2 Circe E2 ScalaPB
28.01.2019 2245s 2752s 2325s 290ms 159ms 18ms
28.01.2019 2193s 2696s 2320s 295ms 161ms 19ms
29.01.2019 2217s 2728s 2277s 296ms 168ms 34ms
01.02.2019 2287s 2741s 2266s 294ms 163ms 19ms
02.02.2019 2218s 2659s 2200s 298ms 162ms 21ms
02.02.2019 2189s 2764s 2319s 289ms 163ms 18ms
02.02.2019 2240s 2695s 2274s 292ms 164ms 18ms
02.02.2019 2244s 2624s 2230s 291ms 171ms 18ms
03.02.2019 2245s 2694s 2293s 292ms 165ms 19ms
03.02.2019 2240s 2688s 2249s 296ms 159ms 35ms
03.02.2019 2196s 2701s 2259s 285ms 162ms 19ms
04.02.2019 2189s 2694s 2232s 290ms 155ms 19ms
Avg. 2225s 2703s 2270s 292ms 163ms 22ms
Med. 2229s 2696s 2270s 292ms 162ms 19ms

Die Daten aus der Tabelle werden in der Abbildung A.2 visualisiert. Die Zahlen wurden
kaufménnisch ohne Nachkommastellen gerundet. Die Testparameter lauteten:

Konfiguration Name Wert
testSet numberOfTestCars 100000
testSet carNameStringMaxLength 200
testSet complexCarNotesStringMaxLength 900
experimentMode timeoutInSeconds 60000
experimentMode actorSnapshotInterval 100000
experimentMode numberOfAdds 100000
experimentMode numberOfUpdates 5000000

50

experimentMode
experimentMode
experimentMode
benchmarkMode
benchmarkMode
benchmarkMode

A.3 Ergebnisse aus den Durchfiihrungen der Experimente

testCar
testComplexCar
waitForProfilerEnter
numberOfSingleTests
testCar
testComplexCar

wahr
wahr
falsch
10000
wahr
wahr

Ergebnisse aus den Experimenten Referenzsystem R3 AWS EC2

50
45
40
35
30
25
20
15
10

[=J,]

El

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Elinm

B Java ECirce M ScalaPB

B Java ECirce M ScalaPB

E2

E2ins

Abbildung A.3 Visualisierung der Ergebnisse Durchfiihrung 1 (Referenzsystem R3 AWS EC2)

Datum E1l Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalalPB
04.01.2019 2083s 1958s 1802s 779ms 219ms 31ms
04.01.2019 2100s 2067s 3727s 756ms 253ms 31ms
Avg. 2902s 2013s 2765s 768ms 236ms 31ms
Med. 2902s 2013s 2765s 768ms 236ms 31ms

Die Daten aus der Tabelle werden in der Abbildung A.3 visualisiert. Die Zahlen wurden
kaufméannisch ohne Nachkommastellen gerundet. Die Testparameter lauteten:

Konfiguration Name Wert
testSet numberOfTestCars 100000
testSet carNameStringMaxLength 200
testSet complexCarNotesStringMaxLength 900
experimentMode timeoutInSeconds 60000
experimentMode actorSnapshotInterval 100000
experimentMode numberOfAdds 100000
experimentMode numberOfUpdates 1000000
experimentMode testCar wahr
experimentMode testComplexCar wahr

51

A Anhiinge

experimentMode waitForProfilerEnter falsch
benchmarkMode numberOfSingleTests 10000
benchmarkMode testCar wahr
benchmarkMode testComplexCar wahr
El E2
500 4,5
450 4
400 35
350 5
300
25
250
2
200
150 Lo
100 1
50 0,5
0 0 —

Elinm

W Java M Circe M ScalaPB

E2ins

M Java M Circe M ScalaPB

Abbildung A.4 Visualisierung der Ergebnisse Durchfiihrung 2 (Referenzsystem R3 AWS EC2)

Datum El Java E1 Circe El ScalaPB E2 Java E2 Circe E2 ScalaPB
05.01.2019 28280s 23415s 20257s 3940ms 1108ms 152ms
06.01.2019 28283s 23557s 20219s 3781ms 1062ms 160ms
Avg. 28282s 23486s 20238s 3861ms 1085ms 156ms
Med. 28282s 23486s 20238s 3861ms 1085ms 156ms

Die Daten aus der Tabelle werden in der Abbildung A .4 visualisiert. Die Zahlen wurden
kaufménnisch ohne Nachkommastellen gerundet. Die Testparameter lauteten:

Konfiguration Name Wert
testSet numberOfTestCars 100000
testSet carNameStringMaxLength 200
testSet complexCarNotesStringMaxLength 900
experimentMode timeoutInSeconds 60000
experimentMode actorSnapshotInterval 100000
experimentMode numberOfAdds 100000
experimentMode numberOfUpdates 5000000
experimentMode testCar wahr
experimentMode testComplexCar wahr
experimentMode waitForProfilerEnter falsch
benchmarkMode numberOfSingleTests 50000
benchmarkMode testCar wahr
benchmarkMode testComplexCar wahr

52

Literaturverzeichnis

[ACM] The ACM Digital Library - A universal modular ACTOR formalism for artificial
intelligence. https://dl.acm.org/citation.cfm?id=1624804. Abgerufen am
28.02.2019.

[Akka] Akka.io (2018): Offizielle Dokumentation - Multiple persistence plugin
configurations. https://doc.akka.io/docs/akka/2.5/persistence. html#multiple-

persistence-plugin-configurations. Abgerufen am
08.03.2019.

[Akkb] Akka.io (2018): Offizielle Dokumentation - A Word About Java Serialization.
https://doc.akka.io/docs/akka/2.5.4/java/serialization.html#a-word-about-java-
serialization. Abgerufen am
08.03.2019.

[Akkc] Akka.io (2018): Offizielle Dokumentation - Ausschnitt Serialisierung - Creating new
Serializers. https://doc.akka.io/docs/akka/2.5/serialization. html#customization.
Abgerufen am 08.03.2019.

[Akkd] Akka.io (2018): Offizielle Dokumentation. https://akka.io/docs. Abgerufen am
09.11.2018.

[Akke] Akka.io (2018): Offizielle Dokumentation - Ausschnitt Akka Persistence mit Event
Sourcing.
https://doc.akka.io/docs/akka/current/persistence.html?language=scala#event-
sourcing. Abgerufen am
20.12.2018.

[Akkf] Akka.io (2018): Offizieller Internetauftritt. https://akka.io. Abgerufen am
09.11.2018.

[Akkg] Akka.io (2018): Offizielle Dokumentation - Ausschnitt Akka Persistence.
https:/ /doc.akka.io/docs/akka/current/persistence.html#introduction. Abgerufen
am 20.12.2018.

[Akkh] Akka.io (2018): Offizielle Dokumentation - Ausschnitt Serialisierung. htt-
ps://doc.akka.io/docs/akka/current/serialization.html?language=scala#introduction.
Abgerufen am 26.02.2019.

[ALV] Alvin Alexander - Scala: How to add new methods to existing classes.
https:/ /alvinalexander.com/scala/scala-how-to-add-new-methods-to-existing-
classes. Abgerufen am
04.03.2019.

[BUL] Bullhost - Definition bzw. Erklaerung: Binaerkompatibel.
https:/ /www.bullhost.de/b/binaerkompatibel.html. Abgerufen am 28.02.2019.

53

Literaturverzeichnis

[CQR]

[GITa]
[GITb]

[GITc]

[GITd]

[GITe]

[GOO]

[Jav]

[JAX]

[JSO]

[Kru09]

[MAR]

[MIC]

[Ode08]

[OPE]

[Pac18]

54

CQRS - Provided by Edument - Entire FAQ. http://www.cqrs.nu/faq. Abgerufen
am 28.02.2019.

GitHub-Seite von Circe. https://github.com/circe/circe. Abgerufen am 01.01.2019.

GitHub-Seite von LevelDB JNI. https:/ /github.com/fusesource/leveldbijni.
Abgerufen am 01.01.2019.

GitHub-Seite von Port of LevelDB to Java. https://github.com/dain/leveldb.
Abgerufen am 01.01.2019.

GitHub-Seite von ScalaMeter. https://scalameter.github.io. Abgerufen am
01.01.2019.

GitHub-Seite von ScalaPB. https://github.com/scalapb/ScalaPB. Abgerufen am
01.01.2019.

Google - Protocol Buffers. https://developers.google.com/protocol-buffers/.
Abgerufen am 09.03.2019.

Java SE Development Kit 8 Download Seite.

https:/ /www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html. Abgerufen am

01.01.2019.

Jaxenter - Java Serialisierung. https:/ /jaxenter.de/aus-der-java-trickkiste-java-
serialisierung-wann-passt-sie-wann-nicht-35558. Abgerufen am
09.03.2019.

JSON - Einfithrung in JSON. https://www.json.org/json-de.html. Abgerufen am
09.03.2019.

G. Krueger. Serialisierung. In Handbuch der Java-Programmierung (ISBN:
978-3-8273-2874-8,3-8273-2373-8), S. 963. Addison-Wesley, 2009.

Martin Fowler - CommandQuerySeparation.
https:/ /martinfowler.com /bliki/CommandQuerySeparation.html. Abgerufen am
28.02.2019.

Microsoft - Pattern: Event sourcing.
https:/ /microservices.io/patterns/data/event-sourcing.html. Abgerufen am
28.02.2019.

M. Odersky. Good actors style. In Programming in Scala (ISBN:
0-9815316-0-1,978-0-9815316-0-1), S. 597. Artima Press, 2008.

Rheinwerk Openbook - Java ist auch eine Insel - Persistente Objekte und
Serialisierung. http://openbook.rheinwerk-
verlag.de/javainsel9/javainsel_17_010.htm#mjtbe8cb1105d7dfaf6adbc23f31c81b93.
Abgerufen am 09.03.2019.

V. E. Pacheco. Understanding event sourcing. In Microservice patterns and best
practices (ISBN: 978-1-78847-120-6,1-78847-120-2), S. 115. Packt Publishing, 2018.

Literaturverzeichnis

[PICa] Brianstorti - The actor model in 10 minutes - Bild Exemplarische Darstellung
Aktorenmodell. https://www.brianstorti.com/the-actor-model/. Abgerufen am
28.02.2019.

[PICb] Heise Developer - Bild Exemplarische Darstellung CQRS.
https:/ /heise.cloudimg.io/width/610/q80.png-lossy-80.webp-lossy-
80.foill/_www-heise-de_/developer/imgs/06/9/7/9/0/2/0/abb2-
8f91b55dc4f69adb.png. Abgerufen am
11.03.2019.

[PICc] Wikimedia Commons - Bild Exemplarische Darstellung FIFO.
https:/ /commons.wikimedia.org/wiki/File:Fifo_queue.png. Abgerufen am
28.02.2019.

[SCAa] Offizielle Seite der Programmiersprache Scala - Seamless integration with Java.
https:/ /www.scala-lang.org/old /node/25. Abgerufen am 04.03.2019.

[SCAD] Offizielle Seite der Programmiersprache Scala. https:/ /www.scala-lang.org.
Abgerufen am 01.01.2019.

[Scac] Offizielle Dokumentation von ScalaMeter - Executors.
https:/ /scalameter.github.io/home/gettingstarted /0.5/executors/. Abgerufen am
08.03.2019.

[Scad] Offizielle Dokumentation von ScalaMeter - Generators.
http:/ /scalameter.github.io/home/ gettingstarted /0.7 /generators /index.html.
Abgerufen am 08.03.2019.

[Scae] Offizielle Dokumentation von ScalaMeter - Simple benchmark.
http:/ /scalameter.github.io/home/gettingstarted /0.7 /simplemicrobenchmark /index.html.
Abgerufen am 08.03.2019.

[SCAf] Offizielle Seite des Build-Werkzeugs SBT. https://www.scala-sbt.org. Abgerufen
am 01.01.2019.

[SCAg] Offizielle Seite der Programmiersprache Scala - Traits.
https:/ /docs.scala-lang.org/tour/traits.html. Abgerufen am 04.03.2019.

[TEC] Techopedia - Bytecode. https://www.techopedia.com/definition/3760/bytecode.
Abgerufen am 04.03.2019.

[Ull14] C. Ullenboom. Die eigene SUID. In Java SE 8 Standard-Bibliothek (ISBN:
978-3-8362-2874-9), S. 658-659. Galileo Computing, 2014.

[UNI] Informatik UNI Hamburg - Typisierung. https://wr.informatik.uni-
hamburg.de/_media/teaching/sommersemester_2018/ep-18-schnieders-
typisierung-praesentation.pdf. Abgerufen am
04.03.20109.

55

56

	Einleitung
	Motivation
	Ziel der Arbeit
	Vorgehen
	Definitionen
	Abgrenzung

	Beschreibung Umgebung und Technologie
	Aktorenmodell
	Event Sourcing
	Akka
	Akka Actors
	Akka Persistence

	Aufbau und Ablauf der Experimente
	Experiment E1 Vollständige Umgebung
	Experiment E2 Benchmark Umgebung

	Serialisierer/De-Serialisierer im Akka Persistence Umfeld
	Java Serialisierer/De-Serialisierer (Java-Standardserialisierung)
	JSON Serialisierer/De-Serialisierer (Circe)
	Google Protocol Buffers Serialisierer/De-Serialisierer (ScalaPB)

	Fazit
	Ergebnisse aus den Durchführungen der Experimente
	Schnelligkeit der Serialisierer/De-Serialisierer
	Praxistauglichkeit der Serialisierer/De-Serialisierer

	Anhänge
	Auszüge aus den Eigenschaften der Referenzsysteme
	Versionen der verwendeten Komponenten
	Ergebnisse aus den Durchführungen der Experimente

	Literaturverzeichnis

