
Fakultät für Informatik

Studiengang Informatik

Serialisierer im Akka Persistence Umfeld

Bachelor Thesis

von

Maximilian Bundscherer

Datum der Abgabe: 18.03.2019
Erstprüfer: Prof. Dr. Korbinian Riedhammer
Zweitprüfer: Prof. Dr. Gerd Beneken

Erklärung

Ich versichere, dass ich diese Arbeit selbständig angefertigt, nicht anderweitig für
Prüfungszwecke vorgelegt, keine anderen als die angegebenen Quellen oder Hilfs-
mittel benutzt sowie wörtliche und sinngemäße Zitate als solche gekennzeichnet
habe.

Rosenheim, den 18.03.2019

Maximilian Bundscherer

Abstract

Diese Bachelorarbeit beschäftigt sich mit der Serialisierung bzw. Deserialisierung im Akka
Persistence Umfeld. Akka Persistence ist eine Erweiterung für Akka Actors, eine Implemen-
tierung des Aktorenmodells. Akka Persistence wird im Bereich Event Sourcing eingesetzt
und lässt die Einbindung unterschiedlicher Serialisierer/De-Serialisierer zu.

Um den aktuellen Zustand durch Events im System abbilden und wiederherstellen zu
können, benötigt Akka einen kompatiblen und geeigneten Serialisierer/De-Serialisierer. Der
verwendete Serialisierer/De-Serialisierer sollte sowohl schnell1 als auch praxistauglich2 sein.
Daher stellt sich die Frage, welcher Serialisierer/De-Serialisierer geeignet ist.

Um auf die Fragestellung eingehen zu können, werden exemplarisch drei verschiedene
Serialisierer/De-Serialisierer miteinander verglichen:

1. Java Serialisierer/De-Serialisierer (Java-Standardserialisierung3)

2. JSON Serialisierer/De-Serialisierer (Circe4)

3. Google Protocol Buffers5 Serialisierer/De-Serialisierer (ScalaPB6)

Die Arbeit hat gezeigt, dass die Praxistauglichkeit der Serialisierer/De-Serialisierer stark
vom Anwendungsfall abhängig ist. Daher beschäftigt sich diese Bachelorarbeit mit dem
generellen Arbeiten mit Serialisierer/De-Serialisierer im Akka Persistence Umfeld; mit dem
konkreten Arbeiten mit den oben aufgeführten Serialisierer/De-Serialisierer in diesem
Umfeld und zeigt mögliche Bewertungskriterien bezüglich der Praxistauglichkeit auf.

Die Arbeit hat auch gezeigt, dass das Kriterium Schnelligkeit in der Praxis nicht von
Relevanz ist.

Schlagworte: Akka, Akka Persistence, Serialisierung, Event Sourcing, Java, Scala, Circe,
Google Protocol Buffers, SerDes

1 siehe Definition Schnelligkeit im Abschnitt 1.4
2 siehe Definition Praxistauglichkeit im Abschnitt 1.4
3 siehe http://openbook.rheinwerk-verlag.de/javainsel9/javainsel_17_010.htm
4 siehe https://github.com/circe/circe
5 siehe https://developers.google.com/protocol-buffers/
6 siehe https://github.com/scalapb/ScalaPB

http://openbook.rheinwerk-verlag.de/javainsel9/javainsel_17_010.htm
https://github.com/circe/circe
https://developers.google.com/protocol-buffers/
https://github.com/scalapb/ScalaPB

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation . 1
1.2 Ziel der Arbeit . 2
1.3 Vorgehen . 2
1.4 Definitionen . 2
1.5 Abgrenzung . 3

2 Beschreibung Umgebung und Technologie 5
2.1 Aktorenmodell . 5
2.2 Event Sourcing . 7
2.3 Akka . 8

2.3.1 Akka Actors . 9
2.3.2 Akka Persistence . 10

2.4 Aufbau und Ablauf der Experimente . 14
2.4.1 Experiment E1 Vollständige Umgebung 20
2.4.2 Experiment E2 Benchmark Umgebung . 23

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld 27
3.1 Java Serialisierer/De-Serialisierer (Java-Standardserialisierung) 33
3.2 JSON Serialisierer/De-Serialisierer (Circe) . 35
3.3 Google Protocol Buffers Serialisierer/De-Serialisierer (ScalaPB) 37

4 Fazit 41
4.1 Ergebnisse aus den Durchführungen der Experimente 41
4.2 Schnelligkeit der Serialisierer/De-Serialisierer 43
4.3 Praxistauglichkeit der Serialisierer/De-Serialisierer 44

A Anhänge 47
A.1 Auszüge aus den Eigenschaften der Referenzsysteme 47
A.2 Versionen der verwendeten Komponenten . 48
A.3 Ergebnisse aus den Durchführungen der Experimente 49

Literaturverzeichnis 53

i

ii

Abbildungsverzeichnis

2.1 Exemplarische Darstellung von drei Aktoren in einem Aktorensystem 6
2.2 Exemplarische Darstellung des FIFO-Prinzips . 6
2.3 Exemplarische Darstellung des CQRS-Prinzips . 7
2.4 Paketübersicht Quellcode der Experimente . 15
2.5 Sequenzdiagramm von Experiment E1 Vollständige Umgebung 21
2.6 Klassendiagramm von Experiment E2 Benchmark Umgebung 25

A.1 Visualisierung der Ergebnisse Durchführung 1 (Referenzsystem R1 Windows 10) 49
A.2 Visualisierung der Ergebnisse Durchführung 1 (Referenzsystem R2 iMac) 50
A.3 Visualisierung der Ergebnisse Durchführung 1 (Referenzsystem R3 AWS EC2) . . 51
A.4 Visualisierung der Ergebnisse Durchführung 2 (Referenzsystem R3 AWS EC2) . . 52

iii

iv

Tabellenverzeichnis

Auszug der Eigenschaften des Referenzsystem R1 Windows 10 47
Auszug der Eigenschaften des Referenzsystem R2 iMac 47
Auszug der Eigenschaften des Referenzsystem R3 AWS EC2 47
Versionen der verwendeten Komponenten . 48
Ergebnisse Durchführung 1 (Referenzsystem R1 Windows 10) 49
Parameter Durchführung 1 (Referenzsystem R1 Windows 10) 49
Ergebnisse Durchführung 1 (Referenzsystem R2 iMac) 50
Parameter Durchführung 1 (Referenzsystem R2 iMac) 50
Ergebnisse Durchführung 1 (Referenzsystem R3 AWS EC2) 51
Parameter Durchführung 1 (Referenzsystem R3 AWS EC2) 51
Ergebnisse Durchführung 2 (Referenzsystem R3 AWS EC2) 52
Parameter Durchführung 2 (Referenzsystem R3 AWS EC2) 52

v

Abkürzungsverzeichnis

ES Event Sourcing

SerDes Serialisierer/De-Serialisierer

JSON JavaScript Object Notation

CQS Command-Query-Separation

CQRS Command-Query-Responsibility-Segregation

Protobuf Protocol Buffers

JVM Java Virtual Machine

JNI Java Native Interface

GC Garbage Collection

FIFO First In – First Out

JOS Java Object Serialization

vi

1 Einleitung

Diese Bachelorarbeit beschäftigt sich mit der Serialisierung bzw. Deserialisierung im Akka
Persistence Umfeld. Akka Persistence ist eine Erweiterung für Akka Actors, eine
Implementierung des Aktorenmodells. Akka Persistence wird im Bereich Event Sourcing
eingesetzt und lässt die Einbindung unterschiedlicher Serialisierer/De-Serialisierer (SerDes)
zu.

Um den aktuellen Zustand durch Events im System abbilden und wiederherstellen zu
können, benötigt Akka einen kompatiblen und geeigneten SerDes. Der verwendete SerDes
sollte sowohl schnell1 als auch praxistauglich2 sein. Daher stellt sich die Frage, welcher
SerDes geeignet ist.

Um auf die Fragestellung eingehen zu können, werden exemplarisch drei verschiedene
SerDes miteinander verglichen:

1. Java SerDes (Java-Standardserialisierung3) (siehe Abschnitt 3.1)

2. JSON SerDes (Circe4) (siehe Abschnitt 3.2)

3. Google Protocol Buffers5 SerDes (ScalaPB6) (siehe Abschnitt 3.3)

1.1 Motivation

Akka Persistence kann im Bereich Event Sourcing (ES) eingesetzt werden [Akke]. Um den
aktuellen Zustand durch Events im System abbilden und wiederherstellen zu können,
benötigt das Toolkit einen kompatiblen und geeigneten SerDes [Akkh]. Events werden bei
der Implementierung auf eine Klasse abgebildet. Das einzelne Event ist also ein Objekt zur
Laufzeit. Um diese Objekte speichern zu können, müssen diese erst auf eine Byte-Folge
abgebildet (serialisiert) werden.

Die Struktur eines Events kann sich im Laufe eines Software-Lebenszyklus ändern7. Damit
muss auch die Klasse in der Implementierung eines Events angepasst werden. Ein
geeigneter SerDes sollte die Byte-Folge, trotz Anpassung der Event-Ursprungsklasse, wieder
korrekt auf ein verwendbares und gültiges Objekt der modifizierten neuen Event-Klasse
abbilden (deserialisieren) können.

1 siehe Definition Schnelligkeit im Abschnitt 1.4
2 siehe Definition Praxistauglichkeit im Abschnitt 1.4
3 siehe http://openbook.rheinwerk-verlag.de/javainsel9/javainsel_17_010.htm
4 siehe https://github.com/circe/circe
5 siehe https://developers.google.com/protocol-buffers/
6 siehe https://github.com/scalapb/ScalaPB
7 zum Beispiel durch eine Änderung der Geschäftslogik

1

http://openbook.rheinwerk-verlag.de/javainsel9/javainsel_17_010.htm
https://github.com/circe/circe
https://developers.google.com/protocol-buffers/
https://github.com/scalapb/ScalaPB

1 Einleitung

1.2 Ziel der Arbeit

Ein Entwickler, der mit Akka Persistence arbeitet, muss sich mit der Wahl von einem SerDes
für seinen Anwendungsfall auseinandersetzen. Da die Wahl von vielen Kriterien abhängt,
soll diese Arbeit dem Leser einen Überblick verschaffen. Anschließend soll der Leser
selbstständig entscheiden können, welcher SerDes für seinen Anwendungsfall geeignet ist.

Die Arbeit hat gezeigt, dass die Praxistauglichkeit der SerDes stark vom Anwendungsfall
abhängig ist. Daher beschäftigt sich diese Bachelorarbeit mit dem generellen Arbeiten mit
SerDes im Akka Persistence Umfeld; mit dem konkreten Arbeiten mit den vorher
aufgeführten SerDes in diesem Umfeld und zeigt mögliche Bewertungskriterien bezüglich
der Praxistauglichkeit auf.

1.3 Vorgehen

Da es viele unterschiedliche Arten und Implementierungen von SerDes gibt, fokussiert sich
diese Arbeit auf die Einbindung, Konfiguration und das praktische Arbeiten mit diesen.

Um auf die Fragestellung eingehen zu können, werden exemplarisch drei verschiedene
SerDes miteinander verglichen:

• Standard Java SerDes als Vertreter der Standardkonfiguration von Akka Persistence.
Dieser SerDes sollte nicht in einer Produktivumgebung verwendet werden (mehr dazu
im Abschnitt 3.1).

• JSON SerDes (Circe) als Vertreter eines SerDes, dessen Format vom Menschen lesbar
ist.

• Google Protocol Buffers SerDes (ScalaPB) als Vertreter eines SerDes, dessen Format
nicht vom Menschen lesbar ist.

Diese Arbeit beschreibt zunächst die nötigen Grundlagen; die verwendete Technologie &
Umgebung und stellt die drei SerDes in Form von zwei Experimenten (Experiment E1
Vollständige Umgebung und Experiment E2 Benchmark Umgebung) gegenüber.

Um einen genaueren Vergleich zu ermöglichen, werden die zwei Experimente mehrmals mit
unterschiedlichen Test-Parametern auf drei unterschiedlichen Referenzsystemen
(Referenzsystem R1 Windows 10, Referenzsystem R2 iMac und Referenzsystem R3 AWS EC2)
für jeden der drei SerDes durchgeführt.

1.4 Definitionen

In dieser Arbeit wird auf mehrere Definitionen zurückgegriffen, die nicht allgemein konkret
genug sind. Daher werden diese genauer definiert:

• Schnelligkeit: In einer messbaren Zeit kann eine fest definierte Menge von
Operationen durchgeführt werden. Bei unterschiedlichen Parametern (zum Beispiel
unterschiedlichen Implementierungen) kann diese Zeit miteinander verglichen werden.

2

1.5 Abgrenzung

Ein System ist im Vergleich zu einem anderen System schneller, wenn es die gleiche
Menge an Operationen in einer kürzeren Zeit durchführen kann.

• Praxistauglichkeit: Unter diesem Begriff versteht der Autor ob eine verwendete
Komponente sinnvoll (ohne viele Anpassungen) in der Praxis verwendet werden kann.

Es wird außerdem auf weitere Definitionen zurückgegriffen, die zum besseren Verständnis
erklärt werden:

• Serialisierung bezeichnet es, ein Objekt in eine Byte-Folge umzuwandeln [Kru09].

• Deserialisierung ist die Umkehrung der Serialisierung, bei der aus einer Byte-Folge
wieder ein Objekt erzeugt wird.

• Binärkompatibel bezeichnet die Eigenschaft, wenn eine Information, die in Binärcode
vorliegt, auf einem anderen System ohne erneute Kompilierung interpretierbar ist
[BUL].

1.5 Abgrenzung

Diese Arbeit beschränkt sich bezüglich Akka auf Akka Actors (Abschnitt 2.3.1) und Akka
Persistence (Abschnitt 2.3.2), da diese Komponenten den minimalen Aufbau für eine ES
getriebene Software in Akka bilden.

Akka Persistence bietet die Anbindung verschiedener Journal- und Snapshot
Storage-Plugins an (mehr dazu im Abschnitt 3). Diese haben einen Einfluss auf die
Schnelligkeit des Systems. Alle Experimente verwenden, um einen signifikanten Vergleich
sicherzustellen, die gleiche Anbindung. Diese Bachelorarbeit geht nicht auf die
unterschiedlichen Plugins ein, da dies nicht zur Beantwortung der Fragestellung beiträgt.

Diese Arbeit geht nicht auf die Versionsunterschiede der verwendeten
Software-Komponenten ein. Die Versionen der verwendeten Komponenten können dem
Abschnitt A.2 entnommen werden.

3

4

2 Beschreibung Umgebung und Technologie

Akka implementiert mit Akka Actors das Aktorenmodell. Um den Zustand eines Aktors
nach dem Neustart wiederherstellen zu können, wird die Erweiterung Akka Persistence
verwendet. Um auf die Fragestellung eingehen zu können, werden in diesem Kapitel erst
die dafür nötigen Grundlagen geschaffen.

2.1 Aktorenmodell

Das Aktorenmodell ist ein Model aus der Informatik für die nebenläufige Programmierung.
Das Programm wird dabei in Aktoren unterteilt. Diese Aktoren werden in einem
Aktorensystem verwaltet. Aktoren kommunizieren ausschließlich über unveränderbare
Nachrichten. Der Zustand eines Aktors ist von außen nicht direkt sichtbar und kann auch
nur über Nachrichten abgefragt und modifiziert werden [Ode08]. Die Abbildung 2.1 zeigt
eine exemplarische Darstellung von drei Aktoren in einem Aktorensystem. Das Model
wurde 1973 das erste Mal von Carl Hewitt, Peter Bishop und Richard Steiger beschrieben
[ACM] und ist bei funktionalen Programmiersprachen wie zum Beispiel Erlang stark
verbreitet.

Beschreibung eines Aktors

Ein Aktor ist eine kleine Verarbeitungseinheit in einem System, dessen Zustand von außen
nicht direkt einsehbar oder veränderbar ist. Um mit einem Aktor interagieren zu können,
um zum Beispiel dessen Zustand einsehen oder verändern zu können, wird ausschließlich
in Form von unveränderbaren Nachrichten mit diesem kommuniziert. Ein Aktor kann
Nachrichten empfangen und selbst versenden. Eingehende Nachrichten werden zunächst in
dem Postfach des jeweiligen Aktors hinterlegt.

Der Aktor arbeitet sequentiell die eingegangenen Nachrichten aus seinem Postfach ab. Das
Postfach verwaltet die Nachrichten in Form einer Warteschlange. Daher arbeitet ein Aktor
nach dem First In – First Out (FIFO)-Prinzip. Bei dem FIFO-Prinzip werden Nachrichten in
der Reihenfolge abgearbeitet, in der diese eingegangen sind. Die Abbildung 2.2 visualisiert
dieses Prinzip.

5

2 Beschreibung Umgebung und Technologie

Quelle [PICa]

Abbildung 2.1 Exemplarische Darstellung von drei Aktoren in einem Aktorensystem

Quelle [PICc]

Abbildung 2.2 Exemplarische Darstellung des FIFO-Prinzips

6

2.2 Event Sourcing

Quelle [PICb]

Abbildung 2.3 Exemplarische Darstellung des CQRS-Prinzips

2.2 Event Sourcing

Beim ES werden alle Veränderungen des Zustands eines Systems in Form von Events
abgebildet [Pac18]. Durch diese Architekturentscheidung ist es möglich, das komplette
System zu jedem Zeitpunkt wiederherstellen zu können. Das unterstützt nicht nur bei
Fehlersuche, sondern ermöglicht es auch, besser zu verstehen wie mit dem System
gearbeitet wird. Eine Software basierend auf dieser Architektur wird üblicherweise nach
dem Command-Query-Responsibility-Segregation (CQRS)-Prinzip (eine Variante des
Command-Query-Separation (CQS)-Prinzips) implementiert [Pac18].

Beschreibung des Command-Query-Separation-Prinzips

Bei diesem Prinzip wird zwischen zwei verschiedenen Methoden unterschieden:

• Queries (Abfragen): Eine Abfrage liefert Daten zurück und verändert nicht den
Zustand [MAR].

• Commands (Kommandos): Ein Kommando verändert den Zustand und liefert keine
Daten zurück [MAR].

Events im Command-Query-Responsibility-Segregation-Prinzip

Nach dem Erhalt eines Kommandos wird dieses zuerst gegen den aktuellen System-Zustand
validiert und bei erfolgreicher Validierung als Event gekennzeichnet und z.B.: in den Event
Store, zum Beispiel einer Datenbank, abgebildet [CQR]. Dieses Konzept wird in Abbildung
2.3 (Befehlsseite) visualisiert. Erst nach einer erfolgreichen Validierung wird die
Zustandsänderung durchgeführt.

7

2 Beschreibung Umgebung und Technologie

Eine solche Validierung kann exemplarisch folgende Punkte beinhalten:

• Darf der Kommandoersteller diese Aktion durchführen?

• Wird nach der Verarbeitung des Events der Zustand für den Anwendungsfall
ungültig?

Ein Kommando (bzw. Event) enthält typischerweise folgende Daten:

• Art des Events (zum Beispiel Verkaufen)

• Nutzdaten des Events (zum Beispiel Fünf Autos)

• Zeitstempel (zum Beispiel 01. Januar 1980)

Durch die Speicherung von Events und durch die anschließende chronologische
Abarbeitung, ist es möglich jeden durchlaufenden Zustand wiederherzustellen [MIC].

2.3 Akka

Akka ist ein Open-Source Toolkit für die Erstellung von parallelisierten, verteilten,
ausfallsicheren und nachrichtengesteuerten Anwendungen in Scala und Java [Akkf]. Akka
implementiert mit Akka Actors das Aktorenmodell (siehe Abschnitt 2.1) und mit Akka
Persistence den ES-Ansatz (siehe Abschnitt 2.2). Akka ist für den Einsatz innerhalb der Java
Virtual Machine (JVM)1 konzipiert und implementiert. Folgende Komponenten sind
Bestandteil von Akka [Akkd]:

• Akka Actors (wird in dieser Arbeit behandelt)

• Akka Streams

• Akka Http

• Akka Cluster

• Cluster Sharding

• Distributed Data

• Akka Persistence (wird in dieser Arbeit behandelt)

• Alpakka

• Akka gRPC

• Commercial Addons

• Akka Management

Wie bereits im Abschnitt 1.5 erwähnt, beschränkt sich diese Arbeit auf Akka Actors und
Akka Persistence, da diese Komponenten den minimalen Aufbau für eine ES getriebene
Software in Akka bilden.

1 https://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html?intcmp=3170

8

https://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html?intcmp=3170

2.3 Akka

2.3.1 Akka Actors

Akka Actors ist eine Implementierung des Aktorenmodells (siehe Abschnitt 2.1). An der
folgenden exemplarischen Implementierung wird verdeutlicht, wie man mit einem Akka
Aktor arbeitet. Der ExampleActor in dieser Implementierung besitzt einen Zustand in
Form eines ganzzahligen Werts (Int).

Zuerst werden alle Nachrichten deklariert:

object ExampleActor {

case object Increment
case object Decrement

case object WhatIsYourResult
case class MyResultIs(value: Int)

}

• Nachrichten vom Typ Increment können dazu benutzt werden, um den internen
Zustand des Aktors um den Wert 1 zu erhöhen. Diese Nachrichten sind Kommandos.

• Nachrichten vom Typ Decrement können dazu benutzt werden, um den internen
Zustand des Aktors um den Wert 1 zu verringern. Diese Nachrichten sind
Kommandos.

• Nachrichten vom Typ WhatIsYourResult können dazu benutzt werden, um über
den internen Zustand des Aktors Auskunft zu erhalten. Diese Nachrichten sind
Abfragen. Der Aktor antwortet auf diese Nachrichten mit einer Nachricht vom Typ
MyResultIs.

Der ExampleActor wird anschließend wie folgt implementiert:

import akka.actor._

class ExampleActor extends Actor {

import ExampleActor._

var state: Int = 0

override def receive: Receive = {

case Increment =>

state = state + 1

case Decrement =>

state = state - 1

case WhatIsYourResult =>

9

2 Beschreibung Umgebung und Technologie

sender ! MyResultIs(value = state)

}

}

• Die Variable state beschreibt den Zustand des Aktors in Form eines ganzzahligen
Werts (Int). Der Wert beträgt bei der Initialisierung des Aktors 0.

• Über die Funktion receive erhält der Aktor die eingehenden Nachrichten
(Kommandos oder Abfragen). Mit Hilfe einer Fallunterscheidung wird anschließend
unterschieden, um welche Nachrichten es sich handelt.

• Bei der Abfrage WhatIsYourResult wird der Versender der Nachricht (sender)
über den aktuellen Zustand des Aktors in Form einer Nachricht
(MyResultIs(value = state)) informiert. Der Aktor verfolgt nun nicht weiter
die versendete Nachricht und wartet keine Empfangsbestätigung vom sender ab.
Dieses Verhalten wird in der Informatik als Fire-and-Forget bezeichnet und wird an
dieser Stelle mit dem Operator ! gekennzeichnet.

Der Zustand wird nicht gesichert und geht damit nach dem Beenden des Aktors
unwiderruflich verloren. Ein Akka Persistence Aktor kann hingegen seinen Zustand
speichern und wiederherstellen (siehe Abschnitt 2.3.2).

2.3.2 Akka Persistence

Um den Zustand eines Akka Aktors nach dem Beenden wiederherstellen zu können, kann
Akka Persistence verwendet werden [Akkg]. Akka Persistence ist eine Erweiterung für
Akka, die es ermöglicht, den Zustand von Akka Persistence Aktoren mithilfe der
Speicherung und Verwaltung von Events und optionalen Momentaufnahmen (Snapshots),
auch nach dem Beenden der Aktoren wiederherzustellen zu können. Damit ist Akka
Persistence eine Implementierung des ES-Ansatzes [Akke].

Ein Akka Persistence Aktor verhält sich von außen betrachtet wie ein Akka Aktor. Alle
Änderungen des Zustands werden auf Events und Snapshots abgebildet. Events werden
durch Akka Persistence im Journal verwaltet, was im ES-Ansatz den Event Store darstellt
(siehe Abschnitt 2.2). Snapshots werden im Snapshot Storage verwaltet. Die optionalen
Snapshots dienen nur der Geschwindigkeitsoptimierung bei der Wiederherstellung des
letzten Zustands eines Akka Persistence Aktors.

Wenn ein Akka Persistence Aktor startet, befindet sich dieser erst im
receiveRecover-Modus, also im Wiederherstellungsmodus. In diesem Modus stellt der
Aktor zuerst einen vergangenen Zustand über den letzten verfügbaren Snapshot wieder her.
Anschließend stellt der Aktor über die Events ab diesem Snapshot seinen letzten gültigen
Zustand her. Die Zustellung des Snapshots und der Events erfolgt in der chronologisch
korrekten Reihenfolge. Wenn der Zustand beispielsweise über zehn Events abgebildet
wurde und ein Snapshot bis zum sechsten Event vorliegt, wird dem Aktor erst dieser
Snapshot zugestellt und anschließend die vier Events ab diesem Snapshot.

10

2.3 Akka

Nach der Wiederherstellung befindet sich der Aktor im receiveCommand-Modus, also
dem normalen Betriebsmodus. In diesem Modus ist der Aktor wieder von außen erreichbar
und verarbeitet aktiv Nachrichten aus seinem Postfach.

An der folgenden exemplarischen Implementierung wird verdeutlicht, wie man mit einem
Akka Persistence Aktor arbeitet. Der PersistentExampleActor in dieser
Implementierung besitzt einen Zustand in Form eines ganzzahligen Werts (Int). In dem
vorliegenden Beispiel wird der ExampleActor aus dem Abschnitt 2.3.1 zu einem Akka
Persistence Aktor.

Zuerst werden wieder alle Nachrichten deklariert:

object PersistentExampleActor {

sealed trait Evt

case object Increment extends Evt
case object Decrement extends Evt

case object WhatIsYourResult
case class MyResultIs(value: Int)

}

• Nachrichten vom Typ Increment können dazu benutzt werden, um den internen
Zustand des Aktors um den Wert 1 zu erhöhen. Diese Nachrichten erben von Evt, da
diese Kommandos später als Events verwendet werden.

• Nachrichten vom Typ Decrement können dazu benutzt werden, um den internen
Zustand des Aktors um den Wert 1 zu verringern. Diese Nachrichten erben von Evt,
da diese Kommandos später als Events verwendet werden.

• Nachrichten vom Typ WhatIsYourResult können dazu benutzt werden, um über
den internen Zustand des Aktors Auskunft zu erhalten. Diese Nachrichten sind
Abfragen. Der Aktor antwortet auf diese Nachrichten mit einer Nachricht vom Typ
MyResultIs.

Der PersistentExampleActor wird anschließend wie folgt implementiert:

import akka.actor._
import akka.persistence._

class PersistentExampleActor extends PersistentActor {

import PersistentExampleActor._

var state: Int = 0

override def persistenceId: String = "persistentExampleActorId"

11

2 Beschreibung Umgebung und Technologie

• Die Variable state beschreibt den Zustand des Aktors in Form eines ganzzahligen
Werts (Int). Der Wert beträgt bei der Initialisierung des Aktors 0.

• Die Variable persistenceId definiert die ID des Aktors. Diese ID wird später für
die Zuordnung im Journal und im Snapshot Storage genutzt (mehr dazu im Abschnitt
3).

override def receiveCommand: Receive = {

case Increment =>

persist(Increment) { evt => updateState(evt) }

case Decrement =>

persist(Decrement) { evt => updateState(evt) }

case WhatIsYourResult =>

sender ! MyResultIs(value = state)

}

• Über die Funktion receiveCommand erhält der Aktor die eingehenden Nachrichten
(Kommandos oder Abfragen) im receiveCommand-Modus, also dem normalen
Betriebsmodus. Mit Hilfe einer Fallunterscheidung wird anschließend unterschieden,
um welche Nachrichten es sich handelt.

• Über den Aufruf von persist(cmd) { evt => updateState(evt) } wird aus
dem Kommando (cmd) ein Event (evt). Dieses Event wird im Journal abgelegt und
anschließend von der Funktion updateState(evt: Evt) verarbeitet.

private def updateState(evt: Evt): Unit = evt match {

case Increment =>

state = state + 1
snapshot()

case Decrement =>

state = state - 1
snapshot()

}

Über die Funktion updateState(evt: Evt) wird eine Zustandsänderung nach einer
Fallunterscheidung durchgeführt und anschließend die Funktion snapshot angesprochen.
Diese Funktion wird sowohl im normalen Betriebsmodus als auch im
Wiederherstellungsmodus genutzt.

12

2.3 Akka

private def snapshot(): Unit = {

if (
!recoveryRunning &&
lastSequenceNr % 5 == 0 &&
lastSequenceNr != 0

) saveSnapshot(state)

}

Über die Funktion snapshot wird vom Zustand des Aktors ein Snapshot angefertigt und
über den Aufruf von saveSnapshot(state) im Snapshot Storage abgelegt. Die Funktion
snapshot überprüft vor dieser Prozedur, ob der Aktor nicht im Wiederherstellungsmodus
läuft, ob es sich nicht um die erste zugestellte Nachricht handelt und, dass nur jede fünfte
Nachricht zu einem Snapshot führt.

override def receiveRecover: Receive = {

case SnapshotOffer(_, snapshot: Int) =>

state = snapshot

case evt: Evt =>

updateState(evt)

}
}

Über die Funktion receiveRecover erhält der Aktor die eingehenden Nachrichten
(Snapshots oder Events) im receiveRecover-Modus, also dem Wiederherstellungsmodus.
Mit Hilfe einer Fallunterscheidung wird anschließend unterschieden, um welche
Nachrichten (Snapshots oder Events) es sich handelt:

• Beim Empfangen eines Snapshots (case SnapshotOffer(_, snapshot: Int))
wird der Zustand des Aktors auf den Snapshot gesetzt.

• Beim Empfangen von Events (case evt: Evt) werden diese wieder durch
updateState verarbeitet.

13

2 Beschreibung Umgebung und Technologie

2.4 Aufbau und Ablauf der Experimente

Um die Schnelligkeit und Praxistauglichkeit (siehe Definitionen im Abschnitt 1.4) der
SerDes zu eruieren, wurden zwei Experimente konzipiert:

• Experiment E1 Vollständige Umgebung: Dieses Experiment wurde entwickelt, um die
ausgewählten SerDes in einem vollständigen Umfeld zu testen. Ein vollständiges
Umfeld stellt einen minimalen Akka Persistence Aufbau mit einem
Test-Aktorensystem und mit einem Test-Aktor dar. Das Experiment und das
vollständige Umfeld werden im Abschnitt 2.4.1 beschrieben.

• Experiment E2 Benchmark Umgebung: Dieses Experiment testet isoliert die
ausgewählten SerDes bezüglich Geschwindigkeit über ScalaMeter. Das Experiment
wird im Abschnitt 2.4.2 beschrieben.

Beschreibung der verwendeten externen Komponenten

In den Experimenten wurden verschiedene externe Komponenten verwendet, die nun zum
besseren Verständnis erläutert werden:

• Java JDK ist eine Sammlung von Programmierwerkzeugen und
Programmbibliotheken, um Anwendungen mit der Programmiersprache Java
entwickeln zu können [Jav].

• Scala ist eine funktionale und objektorientierte Programmiersprache für die JVM
[SCAb].

• SBT ist ein Build-Werkzeug [SCAf].

• Akka Actors ist eine Implementierung des Aktorenmodells für die JVM (siehe
Abschnitt 2.3.1) [Akkd].

• Akka Persistence ist eine Implementierung des ES-Ansatzes für Akka Actors (siehe
Abschnitt 2.3.2) [Akkd].

• Circe ist eine JavaScript Object Notation (JSON)-Implementierung für Scala (siehe
Abschnitt 3.2) [GITa].

• LevelDB JNI ist ein Java Native Interface (JNI)2 für die Datenbank LevelDB3 [GITb].

• Port of LevelDB to Java ist eine Portierung der Datenbank LevelDB zu Java [GITc].

• ScalaMeter ist ein Microbenchmarking- und Regressionstestframework für die JVM
und die Programmiersprache Scala (siehe Abschnitt 2.4.2) [GITd].

• ScalaPB ist ein Protocol Buffers (Protobuf)-Compiler für Scala (siehe Abschnitt 3.3)
[GITe].

Die Versionen der verwendeten Komponenten werden im Abschnitt A.2 dokumentiert.

14

2.4 Aufbau und Ablauf der Experimente

Abbildung 2.4 Paketübersicht Quellcode der Experimente

15

2 Beschreibung Umgebung und Technologie

Aufbau des Quellcodes

Die Experimente wurden in Scala implementiert. Der vollständige Quellcode und die
dazugehörige Dokumentation, ist dem Github-Projekt
maxbundscherer/akka-serialization-comparision4 zu entnehmen.

Da eine Darstellung des gesamten Quellcodes in Form eines Klassendiagramms über beide
Experimente zu unübersichtlich wird, wird im Laufe der Arbeit das Experiment E1
Vollständige Umgebung als Sequenzdiagramm (Abschnitt 2.4.1) und das Experiment E2
Benchmark Umgebung als Klassendiagramm (Abschnitt 2.4.2) visualisiert.

Der Abbildung 2.4 ist der Aufbau des Quellcodes zu entnehmen. Um diesen genauer zu
verstehen, werden nun die einzelnen Pakete beschrieben:

• main/protobuf/: Aus .proto-Dateien in diesem Paket generiert der
Protobuf-Compiler ScalaPB von den Protobuf-Beschreibungen den Scala-Quellcode
(mehr dazu im Abschnitt 3.3). Dieser Compiler wird als SBT Plugin eingebunden und
kompiliert vor dem eigentlichen kompilieren der Scala-Klassen.

• main/resources/: In diesem Paket sind die Konfigurationen (application.conf
und akka-system-*.conf) und die Test-Parameter (params.conf) hinterlegt. Die
verschiedenen SerDes werden über die jeweiligen Konfigurationen (zum Beispiel
akka-system-java.conf) eingebunden. Diese Konfigurationen überschreiben die
Grundkonfiguration (application.conf). Um einen realistischen Ablauf zu
ermöglichen, wurden nur für die Experimente notwendigen Parameter manuell
konfiguriert.

• main/scala/[...]/: In diesem Paket befindet sich der Programmeinstiegspunkt
für Experiment E1 Vollständige Umgebung. Dieses wird im Abschnitt 2.4.1 genauer
spezifiziert.

• main/scala/[...]/actors/: In diesem Paket befindet sich der Test-Aktor für das
Experiment E1 Vollständige Umgebung.

• main/scala/[...]/persistence/: In diesem Paket werden die Nachrichten,
Kommandos und Events deklariert. Generierte Scala-Klassen von ScalaPB werden hier
abgelegt. Klassen aus diesem Paket sind für die verschiedenen SerDes von Relevanz.

• main/scala/[...]/samplecode/: In diesem Paket befindet sich
Beispiels-Quellcode für diese Arbeit. Dieses Paket ist für die Experimente nicht von
Relevanz.

• main/scala/[...]/serializer/: In diesem Paket werden die unterschiedlichen
SerDes eingebunden und angesprochen.

• main/scala/[...]/services/: In diesem Paket befindet sich eine
Abstraktionssicht, um typsicher mit dem Test-Aktor interagieren zu können.
Typsicherheit reduziert unter anderem unerwünschtes oder fehlerhaftes
Programmverhalten [UNI].

2 https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
3 https://github.com/google/leveldb
4 https://github.com/maxbundscherer/akka-serialization-comparision

16

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://github.com/google/leveldb
https://github.com/maxbundscherer/akka-serialization-comparision

2.4 Aufbau und Ablauf der Experimente

• main/scala/[...]/utils/: In diesem Paket befinden sich verschiedene hilfreiche
Implementierungen (zum Beispiel die Zeitmessung und Testdatengenerierung).

• test/scala/[...]/: In diesem Paket befindet sich der Programmeinstiegspunkt
für Experiment E2 Benchmark Umgebung. Dieses wird im Abschnitt 2.4.2 genauer
spezifiziert.

Hinweis: In der Aufführung ist [...] durch
de/maxbundscherer/akka/serializationcomparision zu ersetzen.

Besonderheiten in Scala

Die Experimente (Experiment E1 Vollständige Umgebung und Experiment E2 Benchmark
Umgebung) wurden in Scala implementiert. Der Java-SerDes und andere verwendete
Komponenten sind in Java implementiert. Es ist möglich, diese Java-Komponenten innerhalb
von Scala zu benutzen, da Scala-Bytecode mit Java-Bytecode kompatibel ist. Als Bytecode
wird eine Sammlung von Befehlen für eine virtuelle Maschine bezeichnet.
Programmiersprachen wie Java und Scala werden nicht zu einem direkten Maschinencode
kompiliert, sondern zu einem Zwischencode (genannt Bytecode) [TEC]. Java- und
Scala-Bytecodes sind innerhalb der JVM lauffähig und miteinander kompatibel. Dadurch
können Scala-Komponenten von Java-Komponenten benutzt werden und andersrum
[SCAa]:

object Example {

val javaUUID : java.util.UUID = java.util.UUID.randomUUID()
val scalaString : String = javaUUID.toString

}

In der Programmiersprache Scala sind Traits vertreten. Diese sind ähnlich zu einem
Interface in Java 8 [SCAg]. Traits selbst können nicht instanziiert werden, besitzen
keinen Konstruktor, können aber Implementierungen und Daten enthalten. Eine
Scala-Klasse kann von mehreren Traits erweitert werden, aber nicht von mehreren
abstrakten Scala-Klassen. Traits können dazu benutzt werden, um Daten zwischen
Scala-Klassen auszutauschen. Diesen Mechanismus verwendet der
trait Configuration im utils-Paket, um Konfigurationen Entwicklern zugänglich zu
machen:

trait Configuration {
object Config {

val testConfig = "testValue"
}

}

object Example extends Configuration {
val myConfig = Config.testConfig

}

17

2 Beschreibung Umgebung und Technologie

In Scala ist es mit dem Schlüsselwort implicit möglich, Klassen ohne direkt sichtbaren
Quellcode zu erweitern [ALV]. Dieser Mechanismus ähnelt den Erweiterungsmethoden5 aus
der Programmiersprache C#. In der Scala-Klasse JsonSerializer wird dieser
Mechanismus verwendet, um die Klasse AddCarEvtDb um die Methode .asJson zu
erweitern. Dies ist möglich, da die Klasse JsonSerializer das Paket
io.circe.syntax._ im Quellcode importiert und die Klasse AddCarEvtDb von der
Klasse AnyVal erbt:

package io.circe

/**
* This package provides syntax via enrichment classes.

*/
package object syntax {

implicit final class EncoderOps[A](val wrappedEncodeable: A) extends
AnyVal {

final def asJson(implicit encoder: Encoder[A]): Json = ???
}
implicit final class StringOps(val value: String) extends AnyVal {

final def :=[A: Encoder](a: A): (String, Json) = ???
}

}

Durch das Importieren von diesem Package object ist es möglich, bei Objekten der
Klasse AddCarEvtDb die Methode .asJson benutzen zu können:

val value: AddCarEvtDb = ???
value.asJson

Hinweis: Einige Punkte wurden in diesem Beispiel nicht implementiert, wie man an ???
erkennen kann, da diese nicht zum aktuellen Verständnis beitragen würden.

Gemeinsame Testdaten für die Experimente

Die Testdaten werden vor den Durchläufen automatisch generiert. Um einen sinnvollen
Vergleich sicherzustellen, werden die Testdaten beim Start eines Experiments generiert und
alle Läufe laufen mit den gleichen Testdaten ab (mehr dazu im Abschnitt 4.1).

Es wird zwischen zwei Arten von Testdatenklassen unterschieden:

case class Car(
id: Int,
horsepower: Int,
name: String

)

und

5 https://docs.microsoft.com/de-de/dotnet/csharp/programming-guide/
classes-and-structs/extension-methods

18

https://docs.microsoft.com/de-de/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/de-de/dotnet/csharp/programming-guide/classes-and-structs/extension-methods

2.4 Aufbau und Ablauf der Experimente

case class ComplexCar(
id: Int,
horsepower: Int,
name: String,
fuelConsumption: Float,
dieselEngine: Boolean,
seatAdjustment: Boolean,
fuelTank: Double,
brakingDistance: Double,
notes: String

)

Testobjekte aus der Klasse Car eigenen sich, um die unterschiedlichen SerDes bei einer
geringen Last zu testen. Testobjekte aus der Klasse ComplexCar eigenen sich, um die
unterschiedlichen SerDes bei einer höheren Last zu testen.

Die Generierung der Testdaten lässt sich mit den folgenden Parametern beeinflussen:

• numberOfTestCars: Dieser Wert bestimmt die Anzahl der Testdaten (zum Beispiel
10000)

• carNameStringMaxLength: Dieser Wert bestimmt die maximale Zeichenanzahl des
Attributs name bei Objekten aus der Testklasse Car und ComplexCar (zum Beispiel
200).

• complexCarNotesStringMaxLength: Dieser Wert bestimmt die maximale
Zeichenanzahl des Attributs notes bei Objekten aus der Testklasse ComplexCar
(zum Beispiel 900).

Die Parameter befinden sich in der Konfigurationsdatei6 unter dem Abschnitt testSet.

Wichtige Hinweise zu der Durchführung der Experimente

Um die Experimente selbst durchführen zu können, wird SBT benötigt. SBT sollte vor den
Experimenten anders als Standard parametrisiert werden, um mehr Ressourcen
(zum Beispiel Arbeitsspeicher) auf dem Zielsystem nutzen zu können.

Dies ist über eine Umgebungsvariable mit dem Befehl
export SBT_OPTS="-Xms1G -Xmx8G" möglich:

• Der Parameter Xms gibt die initial allokierte Heap-Größe an.

• Der Parameter Xmx gibt die maximal allokierbare Heap-Größe an.

Mit folgenden Befehlen können die Experimente gestartet werden:

• Experiment E1 Vollständige Umgebung: sbt clean run

• Experiment E2 Benchmark Umgebung: sbt clean test

6 https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/
src/main/resources/params.conf

19

https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf
https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf

2 Beschreibung Umgebung und Technologie

• Starten beider Experimente (sequentiell): sbt mixedMode

• Starten beider Experimente (sequentiell) und die Ausgabe protokollieren:
./autoRunner.sh

Messschwankungen

Messschwankungen können zum Beispiel durch nicht vorhersehbare Durchlaufzeiten von
Garbage Collection (GC), verschiedene automatische Optimierungsmaßnahmen (z.B.:
adaptive Zwischenspeicherung von Befehlen u. Daten und eine sich selbst optimierende
Sprungvorhersage) und unterschiedliche Festplattenzugriffszeiten entstehen.

Um diese Schwankungen zu reduzieren, werden die Läufe mehrmals auf unterschiedlichen
Referenzsystemen (Referenzsystem R1 Windows 10, Referenzsystem R2 iMac und
Referenzsystem R2 iMac) durchgeführt.

2.4.1 Experiment E1 Vollständige Umgebung

Dieses Experiment läuft über sogenannte ExperimentRunner ab. Jeder SerDes wird über
einen eigenen ExperimentRunner getestet. Die ExperimentRunner laufen nicht
parallel, sondern sequentiell, und unterscheiden sich nur über die Verwendung von
unterschiedlichen SerDes. Um einen aussagekräftigen Vergleich sicherzustellen, werden auf
den Umgebungen immer dieselben Operationen mit den gleichen Testdaten und den
gleichen Testparametern durchgeführt. Die benötigte Durchlaufzeit wird während des
Experiments gemessen und anschließend ausgegeben. Bei der Durchführung dieses
Experiments entstehen starke Messschwankungen (siehe Abschnitt 2.4). Die genaue
ExperimentRunner-Implementierung lässt sich dem Github-Projekt
maxbundscherer/akka-serialization-comparision7 entnehmen.

Die Abbildung 2.5 stellt den Ablauf eines ExperimentRunners als abstraktes
nicht-vollständiges Sequenzdiagramm dar:

• Teildurchlauf: Abfragen aller Autos wird dazu benutzt, um über den internen
Zustand des Test-Aktors Auskunft zu erhalten. Um diesen Zustand übermitteln zu
können, muss der Aktor erst gestartet und vollständig wiederhergestellt werden.
Daher wird dieser Mechanismus benutzt, um einen Start und eine
Wiederherstellung des Aktors zu erzwingen.

• Teildurchlauf: Anlegen aller Autos wird dazu benutzt, um den internen Zustand des
Test-Aktors zu modifizieren. Dieser Teildurchlauf legt eine über Parameter definierte
Anzahl von Objekten aus der Klasse Car und ComplexCar an. Die Erstellung erfolgt
über die Events AddCarEvt und AddComplexCarEvt. Diese Events werden vor der
eigentlichen Zustandsänderung serialisiert. Daher wird dieser Teildurchlauf genutzt,
um die Serialisierung zu testen.

7 https://github.com/maxbundscherer/akka-serialization-comparision/blob/
master/src/main/scala/de/maxbundscherer/akka/serializationcomparision/utils/
ExperimentRunner.scala

20

https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/scala/de/maxbundscherer/akka/serializationcomparision/utils/ExperimentRunner.scala
https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/scala/de/maxbundscherer/akka/serializationcomparision/utils/ExperimentRunner.scala
https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/scala/de/maxbundscherer/akka/serializationcomparision/utils/ExperimentRunner.scala

2.4 Aufbau und Ablauf der Experimente

Abbildung 2.5 Sequenzdiagramm von Experiment E1 Vollständige Umgebung

21

2 Beschreibung Umgebung und Technologie

• Test-Aktor Absturz simulieren wird dazu benutzt, um den Test-Aktor abstürzen zu
lassen. Nach Eingang des Kommandos SimulateCrashCmd wird auf dem Aktor eine
Ausnahme vom Typ RuntimeException ausgelöst. Über diese
RuntimeException stürzt der Aktor ab, wird anschließend neu gestartet und stellt
sich wieder her. Bei der Wiederherstellung müssen alle verarbeitenden Events und
Snapshots wieder deserialisiert werden. Daher wird dieser Mechanismus genutzt,
um die Deserialisierung zu testen.

• Teildurchlauf: Bearbeiten aller Autos wird dazu benutzt, um den internen Zustand
des Test-Aktors zu modifizieren. Dieser Teildurchlauf bearbeitet eine über Parameter
definierte Anzahl von Objekten aus der Klasse Car und ComplexCar. Die
Bearbeitung erfolgt über die Events UpdateCarEvt und UpdateComplexCarEvt.
Diese Events werden vor der eigentlichen Zustandsänderung serialisiert. Daher wird
dieser Teildurchlauf genutzt, um die Serialisierung zu testen.

Parameter dieses Experiments

Dieses Experiment lässt sich mit folgenden Parametern konfigurieren:

• timeoutInSeconds: Dieser Wert bestimmt die maximale Zeit in Sekunden, die
gewartet wird, bis der Test-Aktor antwortet (zum Beispiel 6000). Der Wert sollte nicht
zu gering gewählt werden, da die Wiederherstellung des Aktors je nach Parameter
mehr Zeit in Anspruch nimmt.

• actorSnapshotInterval: Dieser Wert bestimmt, in welchem Nachrichten-Intervall
der Test-Aktor Snapshots von seinem Zustand macht (mehr dazu im Abschnitt 2.3.2)
(zum Beispiel 10000).

• numberOfAdds: Dieser Wert bestimmt die Anzahl von Objekten aus der Klasse Car
und ComplexCar, die beim Teildurchlauf: Anlegen aller Autos angelegt werden (zum
Beispiel 1000).

• numberOfUpdates: Dieser Wert bestimmt die Anzahl von Objekten aus der Klasse
Car und ComplexCar, die beim Teildurchlauf: Bearbeiten aller Autos bearbeitet werden
(zum Beispiel 100000).

• testCar: Dieser Wert bestimmt, ob mit Objekten aus der Klasse Car beim
Teildurchlauf: Anlegen aller Autos und Teildurchlauf: Bearbeiten aller Autos getestet wird
(zum Beispiel true).

• testComplexCar: Dieser Wert bestimmt, ob mit Objekten aus der Klasse
ComplexCar beim Teildurchlauf: Anlegen aller Autos und Teildurchlauf: Bearbeiten aller
Autos getestet wird (zum Beispiel false).

• waitForProfilerEnter: Dieser Wert definiert, ob bei Programmstart auf eine
Benutzereingabe (zum Beispiel Entertaste wird gedrückt) gewartet wird (zum Beispiel
false). Das Warten auf eine Benutzereingabe kann sinnvoll sein, wenn zum Beispiel
ein Profiler eingebunden wird.

22

2.4 Aufbau und Ablauf der Experimente

Die Parameter befinden sich in der Konfigurationsdatei8 unter dem Abschnitt
experimentMode.

2.4.2 Experiment E2 Benchmark Umgebung

Dieses Experiment führt über ScalaMeter eine Geschwindigkeitsmessung durch und testet
isoliert die SerDes mit Objekten der Klasse AddCarEvt und AddComplexCarEvt. Die
gemessene Zeit wird anschließend in Millisekunden ausgegeben.

ScalaMeter unterstützt mehrere Arten von Tests. In diesem Experiment wird ein Test mit
einfacher und lokaler Zeitmessung durchgeführt. Das Framework bietet die Möglichkeit
eigenständig Testdaten zu generieren [Scad]. Da diese Möglichkeit aber den Testfall nicht
sinnvoll abbilden kann, wird in diesem Experiment auf eigene generierte Testdaten
zurückgegriffen (mehr dazu im Abschnitt 2.4).

Um über ScalaMeter eine Zeitmessung durchführen zu können, muss zunächst ein
Generator für die Testdaten angeben werden [Scae] [Scad]. In diesem Fall wurde ein
Generator für ganzzahlige Werte (Int) gewählt. Dieser wird mit folgenden Eigenschaften
parametrisiert:

• axisName: Dieser Wert definiert den Namen des Generators (zum Beispiel
MyGenerator).

• from: Dieser Wert definiert den Startwert des generierten globalen Bereichs (zum
Beispiel 100).

• upto: Dieser Wert definiert den Endwert des generierten globalen Bereichs (zum
Beispiel 1000).

• hop: Dieser Wert definiert die Sprünge zwischen den einzelnen Bereichen (zum
Beispiel 100).

Wenn die Parameter wie folgt belegt werden:

• from: 100

• upto: 300

• hop: 100

werden drei einzelne Bereiche (0-100; 0-200 und 0-300) generiert.

ScalaMeter führt für jeden Bereich einen einzelnen Durchlauf durch (im vorherigen Beispiel
also drei Durchläufe) und übergibt die Werte der einzelnen Bereiche dem einzelnen
Durchlauf. Diese Eigenschaft ist für den Ablauf des Experiments nicht zielführend, da nur
eine bestimmte Anzahl von Testobjekten getestet werden soll. Daher wurden bei der
Durchführung der Experimente die Parameter from, upto und hop auf den gleichen Wert
gesetzt, um nur einen Durchlauf mit nur einem Bereich zu erzwingen.

8 https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/
src/main/resources/params.conf

23

https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf
https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf

2 Beschreibung Umgebung und Technologie

Beispiel: from = upto = hop = 300 führt dazu, dass mit 300 Objekten aus den vorher
generierten Testdaten (siehe Abschnitt 2.4) getestet und die Zeit gemessen wird. Um das zu
ermöglichen, wird für jeden ganzzahligen Wert aus diesem generierten Bereich ein
Testobjekt aus den Testdaten genommen. Der ganzzahlige Wert dient dabei als Index für den
Zugriff auf die generierten Testdaten.

Für jedes Testobjekt (Objekte der Klasse AddCarEvt oder AddComplexCarEvt) wird eine
Serialisierung zu einer Byte-Folge durchgeführt. Anschließend eine Deserialisierung von der
Byte-Folge zurück zum Testobjekt.

Jeder Durchlauf wird von ScalaMeter standardmäßig 36-mal mit einer Zeitmessung
durchgeführt. Anschließend wird das Ergebnis gemittelt und ausgegeben. Dies dient dazu,
um ein genaueres Messergebnis zu erhalten. Die ausgebenden Werte liegen in
Millisekunden vor [Scae].

Das Framework führt vor jedem Durchlauf warmup runs durch, bis ein stabiler
Messzustand (mit dem Namen Steady-state) erreicht wird [Scac]. Erst wenn dieser
Zustand erreicht wird, werden die eigentlichen Test-Durchläufe durchgeführt. Dies dient
auch dazu, die Messschwankungen (siehe Abschnitt 2.4) zu reduzieren.

Implementierung dieses Experiments

Das nicht-vollständige Klassendiagramm (Abbildung 2.6) zeigt den relevanten Teil der
Implementierung:

• Jeder SerDes wird durch einen einzelnen Test (JavaTest, JsonTest und
ProtobufTest) getestet.

• Jeder dieser einzelnen Tests erbt von der abstrakten Klasse AbstractTest, in der die
eigentlichen Tests implementiert sind.

• Die einzelnen Tests unterscheiden sich nur in der Verwendung unterschiedlicher
SerDes.

• Die Funktion triggerSingleSerializeAndDeserialize(i: Int) wird für
jeden ganzzahligen Wert aus dem von ScalaMeter generierten Testbereich (zum
Beispiel 0-100) aufgerufen. Diese Funktion holt sich zunächst über den Wert des
Parameters i als Index ein Objekt aus den Testdatenobjekten. Dieses Objekt wird
anschließend (über die Funktion serializeAddCarEvt(value: AddCarEvt)
bzw. serializeAddComplexCarEvt(value: AddComplexCarEvt)) serialisiert
und abschließend (über die Funktion
deserializeAddCarEvt(value: AddCarEvt) bzw.
deserializeAddComplexCarEvt(value: AddComplexCarEvt)) deserialisiert.

24

2.4 Aufbau und Ablauf der Experimente

Abbildung 2.6 Klassendiagramm von Experiment E2 Benchmark Umgebung

25

2 Beschreibung Umgebung und Technologie

Parameter dieses Experiments

Dieses Experiment lässt sich mit folgenden Parametern konfigurieren:

• numberOfSingleTests: Dieser Wert bestimmt die Anzahl der getesteten Objekte
aus den Testdaten (zum Beispiel 100). Der Wert sollte höher als die Anzahl der
Testdaten sein.

• testCar: Dieser Wert bestimmt, ob mit Objekten aus der Klasse AddCarEvt getestet
wird (zum Beispiel true).

• testComplexCar: Dieser Wert bestimmt, ob mit Objekten aus der Klasse
AddComplexCarEvt getestet wird (zum Beispiel false).

Die Parameter befinden sich in der Konfigurationsdatei9 unter dem Abschnitt
benchmarkMode.

9 https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/
src/main/resources/params.conf

26

https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf
https://github.com/maxbundscherer/akka-serialization-comparision/blob/master/src/main/resources/params.conf

3 Serialisierer/De-Serialisierer im Akka
Persistence Umfeld

Dieses Kapitel setzt voraus, dass sich der Leser mit Akka Actors (Abschnitt 2.3.1) und Akka
Persistence (Abschnitt 2.3.2) auseinandergesetzt hat:

• Events werden durch Akka Persistence im Journal verwaltet.

• Snapshots werden durch Akka Persistence im Snapshot Storage verwaltet.

Events und Snapshots sind zur Laufzeit Objekte. Um diese Objekte im Journal oder
Snapshot Storage abbilden zu können, müssen diese erst über einen SerDes zu einer
Byte-Folge serialisiert werden. Um ein Event oder einen Snapshot wieder als Objekt zur
Laufzeit benutzen zu können, muss dieses erst von einer Byte-Folge über einen SerDes
deserialisiert werden.

Verwaltung von Events im Journal

Das Journal wird in Akka Persistence in Form eines Plugins eingebunden [Akka]. Mehr
dazu im Abschnitt 3. Um ein Event im Journal verwalten zu können, werden mindestens
folgende Informationen benötigt:

• persistenceId: Dieser Wert wird für die Zuordnung der Events für einen Aktor
benutzt und sollte daher nicht doppelt vorkommen (zum Beispiel
customer-account-123). Der Wert muss im Aktor vom Entwickler gesetzt
werden (siehe Abschnitt 2.3.2).

• sequenceNumber: Dieser ganzzahlige fortlaufende Wert definiert die Reihenfolge der
Events (zum Beispiel 0). Durch diese Information wird sichergestellt, dass der Aktor
bei der Wiederherstellung die Events chronologisch korrekt abarbeitet (siehe Abschnitt
2.3.2). Dieser Wert wird von Akka Persistence automatisch gesetzt.

• manifest: Dieser Wert repräsentiert die Klassenzuordnung der Events als
Zeichenkette (zum Beispiel AddCarEvt). Über diese Information kann der SerDes
unterscheiden, um welche Klasse es sich bei dem Event beim Deserialisieren handelt.
Dieser Wert wird vom SerDes beim Serialisieren gesetzt (mehr dazu im Abschnitt
3).

• payload: Dieser Wert repräsentiert das serialisierte Event als Byte-Folge. Der Wert
wird vom SerDes beim Serialisieren gesetzt.

27

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Verwaltung von Snapshots im Snapshot Storage

Der Snapshot Storage wird in Akka Persistence als Plugin eingebunden [Akka]. Mehr dazu
im Abschnitt 3. Um einen Snapshot im Snapshot Storage verwalten zu können, werden
mindestens folgende Informationen benötigt:

• persistenceId: Dieser Wert wird für die Zuordnung der Snapshots für einen Aktor
benutzt und sollte daher nicht doppelt vorkommen (zum Beispiel
customer-account-123). Der Wert muss im Aktor vom Entwickler gesetzt
werden (siehe Abschnitt 2.3.2).

• payload: Dieser Wert repräsentiert den serialisierten Snapshot als Byte-Folge. Der
Wert wird vom SerDes beim Serialisieren gesetzt.

Hinweis: Eine Information über die Klassenzuordnung (über zum Beispiel die Information
manifest im Journal) ist an dieser Stelle nicht notwendig, da Akka Persistence nur eine
Scala-Klasse als Snapshot-Klasse akzeptiert.

Unterschiedliche Arten von Serialisierer/De-Serialisierer

Es ist möglich zwei Arten von SerDes in Akka einzubinden [Akkh]:

• Serializer: Diese Art von SerDes setzt die Information manifest im Journal
automatisch. Das Attribut wird hierbei auf den Klassennamen des Events gesetzt.

• SerializerWithStringManifest: Diese Art von SerDes setzt die Information
manifest im Journal nicht automatisch und muss daher vom Entwickler definiert
werden. Diese Art von SerDes wird im Laufe der Arbeit behandelt.

Definieren eigener Serialisierer/De-Serialisierer

In Akka ist es möglich einen eigenen SerDes einzubinden. Dies ist über die
Implementierung einer eigenen Klasse (hier SampleSerDes) möglich, die von der
abstrakten Klasse Serializer oder SerializerWithStringManifest erbt [Akkc]:

package de.mb.akka.serializationcomparision.serializer

class SampleSerDes extends SerializerWithStringManifest {

override def identifier: Int = ???

override def manifest(o: AnyRef): String = ???

override def toBinary(o: AnyRef): Array[Byte] = ???

override def fromBinary(bytes: Array[Byte], manifest: String): AnyRef
= ???

}

Hinweis: Einige Punkte wurden in diesem Beispiel nicht implementiert, wie man an ???
erkennen kann, da diese nicht zum aktuellen Verständnis beitragen würden.

28

• Der Wert identifier definiert die intern verwendete ID für Akka und sollte nicht
doppelt vorkommen.

• Die Methode manifest(o: AnyRef): String wird von Akka Persistence benutzt,
um die Information über die Klassenzuordnung beim Serialisieren auf die Information
manifest abbilden zu können. Über diese Information kann der SerDes
unterscheiden, um welche Klasse es sich beim Deserialisieren handelt. Daher sollte die
gleiche Logik in der Funktion toBinary(o: AnyRef): Array[Byte] und
fromBinary(bytes: Array[Byte], manifest: String): AnyRef
implementiert werden.

• Die Methode toBinary(o: AnyRef): Array[Byte] wird von Akka Persistence
benutzt, um ein Objekt (o: AnyRef) auf eine Byte-Folge (Array[Byte]) abbilden zu
können. Diese Byte-Folge wird auf die Information payload abgebildet.

• Die Methode
fromBinary(bytes: Array[Byte], manifest: String): AnyRef) wird
von Akka Persistence benutzt, um eine Byte-Folge (bytes: Array[Byte]) über die
Information über die Klassenzuordnung (manifest: String) durchführen zu
können.

• Dieser Mechanismus wird auch genutzt, um die unterschiedlichen SerDes aus dieser
Arbeit einbinden zu können (die Referenzimplementierung kann dem Abschnitt 2.4
entnommen werden).

• Nach Implementierung dieser Klasse muss dieser SerDes noch in der Konfiguration
angegeben werden.

Konfiguration: Einbindung der Serialisierer/De-Serialisierer

Standardmäßig verwendet Akka die Java-Standardserialisierung [Akkh]. Diese wird aber
nicht empfohlen, da diese zwischen unterschiedlichen Java-Versionen und Systemen nicht
binärkompatibel ist [Akkb].

Wenn die Java-Standardserialisierung ohne Warnung beim Programmstart verwenden
werden soll, kann in der Konfigurationsdatei
(src/main/resources/application.conf) die Konfiguration
akka.actor.warn-about-java-serializer-usage auf den Wert false gesetzt
werden.

29

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Die Einbindung eines SerDes erfolgt ebenfalls in der Konfigurationsdatei und sieht wie folgt
aus:

akka.actor {

serializers {
mySerDes =

"de.mb.akka.serializationcomparision.serializer.SampleSerDes"
}

serialization-bindings {
"de.sample.Evt" = mySerDes

}

}

• Über die Zuweisung von mySerDes wird ein SerDes eingebunden. Der Wert definiert
den Klassenpfad der verwendeten Klasse, die von der abstrakten Klasse Serializer
oder SerializerWithStringManifest erben muss.

• Über die Zuweisung von "de.sample.Evt" = mySerDes wird dieser SerDes für
Objekte vom Typ de.sample.Evt verwendet.

Konfiguration: Journal- und Snapshot Storage-Plugin

Das Journal und der Snapshot Storage werden als Plugins in Akka eingebunden [Akka]. Es
existieren verschiedene Plugins, die das Journal oder den Snapshot Storage auf verschiedene
Arten von Datenbanken abbilden (zum Beispiel auf eine relationale Datenbank, auf eine
NoSQL-Datenbank oder eine In-Memory-Datenbank). Auf die unterschiedlichen Plugins
wird an dieser Stelle (wie bereits im Abschnitt 1.5 beschrieben) nicht eingegangen, da dies
nicht zum aktuellen Verständnis beitragen würde.

Die Einbindung der Plugins erfolgt ebenfalls in der Konfigurationsdatei und sieht
exemplarisch wie folgt aus:

akka.persistence {
journal.plugin = "akka.persistence.journal.leveldb"
snapshot-store.plugin = "akka.persistence.snapshot-store.local"

}

• Für das Journal-Plugin wurde eine LevelDB-Portierung verwendet (mehr dazu im
Abschnitt 2.4).

• Für das Snapshot Storage-Plugin wurde ein Plugin verwendet, dass die Snapshots im
lokalen Dateisystem verwaltet.

• Für die Entwicklung ist diese Konfiguration ausreichend. Für eine
Produktivumgebung sollte diese aber nicht verwendet werden, weil die Speicherung
der Daten nur temporär erfolgt und die Daten beim Beenden des Programms bereinigt
und damit gelöscht werden.

30

Nicht direkt kompatible Deserialisierung über einen Umweg

Manchen SerDes bereitet es Probleme, eine Byte-Folge nach Modifikation der
Ursprungsklasse nach Serialisierung wieder direkt Deserialisieren zu können. Ein Beispiel
hierfür findet man im Abschnitt 3.2. Um eine serialisierte Byte-Folge trotzdem noch
verwenden zu können, kann sich mit der folgenden exemplarischen Implementierung
beholfen werden:

Hinweis: Die Ursprungsklasse (z.B.: CarV1) wird dabei nicht verändert, stattdessen wird
eine komplett neue Klasse (z.B.: CarV2) mit den gewünschten Eigenschaften und ein
unidirektionaler Konverter (von der alten auf die neue Klasse) implementiert.

Das folgende Quellcode-Beispiel zeigt exemplarisch die Klasse CarV1:

case class CarV1(
title: String,
horsePower: Int,
color: Int

)

Das folgende Quellcode-Beispiel zeigt exemplarisch die Klasse CarV2, bei der das Attribut
color nun keine ganze Zahl mehr repräsentiert, sondern eine Zeichenkette:

case class CarV2(
title: String,
horsePower: Int,
color: String

)

Das folgende Quellcode-Beispiel zeigt exemplarisch eine Funktion, die ein Objekt der Klasse
CarV1 zu einem Objekt der Klasse CarV2 konvertiert:

def convertCar(value: CarV1): CarV2 = {
CarV2 (
title = value.title,
horsePower = value.horsePower,
color = value.color match { case 0 => "red" case _ => "blue" }
)

}

31

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Nun muss diese Logik noch in Akka Persistence eingebunden werden. Das folgende
Quellcode-Beispiel zeigt exemplarisch eine Möglichkeit dafür:

class ConverterExample extends SerializerWithStringManifest {

import ConverterExample._

override def identifier: Int = 9001

override def manifest(o: AnyRef): String = o match {
case CarV1 => "CarV1"
case CarV2 => "CarV2"

}

override def toBinary(o: AnyRef): Array[Byte] = o match {
case obj: CarV1 => ???
case obj: CarV2 => ???

}

override def fromBinary(bytes: Array[Byte], manifest: String): AnyRef
= manifest match {

case "CarV1" =>

val obj: CarV1 = ???
convertCar(obj)

case "CarV2" =>

???
}

}

Hinweis: Einige Punkte (Serialisierungs- und Deserialisierungs-Logik) wurden in diesem
Beispiel nicht implementiert, wie man an ??? erkennen kann, da diese nicht zum aktuellen
Verständnis beitragen würden.

Durch diese Implementierung wird ein Objekt der Klasse CarV1 automatisch nach der
Deserialisierung zu einem Objekt der Klasse CarV2 konvertiert. Akka kann nun mit diesen
Objekten arbeiten, ohne dass sich der Entwickler weiter damit beschäftigen muss.

32

3.1 Java Serialisierer/De-Serialisierer (Java-Standardserialisierung)

3.1 Java Serialisierer/De-Serialisierer (Java-Standardserialisierung)

Standardmäßig verwendet Akka die Java-Standardserialisierung. Diese sollte aber nicht
verwendet werden, wie bereits im Abschnitt 3 beschrieben. Die Java-Standardserialisierung
kann auch innerhalb von Scala verwendet werden, wie bereits im Abschnitt 2.4 ersichtlich
wird.

Verwendung

Diese Arbeit geht nicht auf die Logik bzw. Implementierung dieses SerDes ein, wie bereits
im Abschnitt 1.5 beschrieben. In Java lassen sich Objekte über verschiedene Ansätze
serialisieren:

• Standardserialisierung: Die Objektstruktur und Zustände werden in ein binäres
Format abgebildet. Dieses Verfahren wird auch als Java Object Serialization (JOS)
bezeichnet [OPE].

• XML-Serialisierung über JavaBeans Persistence: Das Objekt wird auf ein
XML-Format1 abgebildet. Nur Java-Beans-Komponenten können mit diesem Verfahren
serialisiert und deserialisiert werden [OPE].

• XML-Abbildung über JAXB: Die Objektstruktur und Zustände werden über JAXB2

auf ein XML-Format abgebildet [OPE].

Hinweis: Diese Arbeit beschäftigt sich mit der Standardserialisierung.

Die Serialisierung erfolgt über die Klasse ObjectOutputStream und die Methode
writeObject, wie in dem folgenden Beispiel demonstriert wird:

private def toJavaByteArray(o: java.io.Serializable): Array[Byte] = {

val byteArrayOutputStream : ByteArrayOutputStream = new
ByteArrayOutputStream

val objectOutputStream : ObjectOutputStream = new
ObjectOutputStream(byteArrayOutputStream)

objectOutputStream.writeObject(o)

objectOutputStream.close()
byteArrayOutputStream.close()

byteArrayOutputStream.toByteArray
}

1 https://wiki.selfhtml.org/wiki/XML
2 https://docs.oracle.com/javase/8/docs/technotes/guides/xml/jaxb/index.html

33

https://wiki.selfhtml.org/wiki/XML
https://docs.oracle.com/javase/8/docs/technotes/guides/xml/jaxb/index.html

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Die Deserialisierung erfolgt über die Klasse ObjectInputStream und die Methode
readObject, wie in dem folgenden Beispiel demonstriert wird:

private def fromJavaByteArray[ObjectType](bytes: Array[Byte]) :
ObjectType = {

val byteArrayInputStream : ByteArrayInputStream = new
ByteArrayInputStream(bytes)

val objectInputStream : ObjectInputStream = new
ObjectInputStream(byteArrayInputStream)

val ans: ObjectType =
objectInputStream.readObject().asInstanceOf[ObjectType]

objectInputStream.close()
byteArrayInputStream.close()

ans
}

Dieser SerDes kann nur Klassen serialisieren bzw. deserialisieren, die von der Schnittstelle
Serializable erben. Falls dies nicht der Fall ist, tritt eine Ausnahme vom Typ
NotSerializableException auf. Diese Schnittstelle enthält keine Methoden und ist
somit nur eine Markierungsschnittstelle3 [OPE].

Ein Beispiel

Exemplarisch wird durch diese Form der Serialisierung aus dem Scala-Objekt

Car(id = 0, name = "BMW F30", horsePower = 200)

diese Byte-Folge:

Hinweis: Um diese Byte-Folge darzustellen, wurde diese in eine Zeichenkette konvertiert.
Nicht druckbare Zeichen werden nicht abgebildet.

Hinweise

• Zum Deserialisieren benötige Klassen müssen unter dem gleichen Klassenpfad
vorliegen wie bei der Serialisierung [JAX]. Dies kann durch manuelles Setzen des
Attributs serialVersionUUID innerhalb der Klassen umgangen werden [Ull14].

• Falls das Attribut serialVersionUUID nicht vom Entwickler gesetzt wurde, wird
dieses automatisch über das Java-Dienstprogramm serialver4, auf Basis der
Klassendefinition, berechnet [Ull14]. Eine Änderung der Klassendefinition kann also
zu einer veränderten serialVersionUUID führen.

3 https://www.it-visions.de/glossar/alle/3113/Marker_Interface.aspx
4 https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/serialver.html

34

https://www.it-visions.de/glossar/alle/3113/Marker_Interface.aspx
https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/serialver.html

3.2 JSON Serialisierer/De-Serialisierer (Circe)

• Die serialVersionUUID wird vor dem Deserialisieren mit der Klasse abgeglichen.
Falls der Wert nicht übereinstimmt, wird die Deserialisierung abgebrochen und es tritt
eine Ausnahme auf.

• Die Serialisierung bzw. Deserialisierung ist abhängig vom verwendeten Softwarestand.
Eine Deserialisierung kann bei unterschiedlichen Softwareständen zu Problemen
führen [JAX]. Da in der Praxis unterschiedliche Softwarestände (zum Beispiel nach der
Aktualisierung der JVM) vorkommen, ist diese Form der Serialisierung bzw.
Deserialisierung nicht in einer Produktivumgebung praxistauglich.

• Da Akka standardmäßig die Java-Standardserialisierung verwendet, ist keine
zusätzliche Konfiguration oder Einbindung nötig. Es ist darauf zu achten, dass die zu
verarbeitenden Klassen von der Schnittstelle Serializable erben. Case-Klassen
in Scala erfüllen diese Anforderungen automatisch und können daher verwendet
werden.

3.2 JSON Serialisierer/De-Serialisierer (Circe)

JSON ist ein Datenaustauschformat, dass für den Menschen einfach les- und schreibbar ist.
Für Maschinen ist dieses Format einfach zu parsen und zu generieren, da die Analyse der
Datenstruktur nicht aufwendig ist [JSO].

Es basiert auf einer Untermenge der Programmiersprache JavaScript. JSON ist unabhängig
von der verwendeten Programmiersprache. Dadurch findet dieses Format eine hohe
Verbreitung in der Speicherung von Daten und im Datenaustausch [JSO].

Das Format JSON verglichen mit Scala

JSON wurde im Jahr 1999 in ECMA-262 dritte Edition standardisiert und sieht
exemplarisch wie folgt aus:

{
"age" : 5,
"name" : "MyData",
"tags" : ["tag0", "tag1", "tagN"]

}

Dieses Beispiel zeigt die beiden Strukturen, auf welchen JSON basiert (vgl. [JSO]), auf:

• Name/Wert Paare: In Scala würde diese Struktur zum Beispiel als Map repräsentiert
werden.

• Eine geordnete Liste von Werten: In Scala würde diese Struktur zum Beispiel als
Array oder List repräsentiert werden.

35

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Implementierung durch Circe

Diese Arbeit geht nicht auf die Logik bzw. Implementierung dieses SerDes ein, wie bereits
im Abschnitt 1.5 beschrieben. Die reine Serialisierungs- und Deserialisierungs-Logik wird
durch die Bibliothek Circe5 implementiert (mehr dazu im Abschnitt 2.4) und über einen
eigenen SerDes mithilfe der Klasse JsonSerializer eingebunden (mehr dazu im
Abschnitt 3). Circe wurde aus folgenden Gründen als Vertreter eines JSON-SerDes gewählt:

• Hohe Anzahl an beteiligten Entwicklern (über 145) (vgl. [GITa])

• Hohe Anzahl an Quellcode-Beiträgen (über 1.700) (vgl. [GITa])

• Viele und einschlägige Projekte verwenden diese Implementierung (vgl. [GITa])

• Direkt in Scala ohne Adapter verwendbar

Ein Beispiel

Exemplarisch wird durch diese Form der Serialisierung aus dem Scala-Objekt

Car(id = 0, name = "BMW F30", horsePower = 200)

folgende JSON-Ausgabe:

{
"id" : 0,
"name" : "BMW F30",
"horsePower" : 200

}

Hinweise

• Circe serialisiert ein Objekt abstrahiert zu einem Objekt der Klasse JSON. Diese Klasse
bietet die Möglichkeit über die Methode toString(): String die eigentliche
JSON-Ausgabe als Zeichenkette zu repräsentieren. Diese Zeichenkette kann durch, die
in Java bereitgestellte Methode byte[] getBytes(String charsetName) zu
einer Byte-Folge über einen definierten Zeichensatz konvertiert werden. Bei der
Deserialisierung sollte die Umkehrung mit dem gleichen Zeichensatz durchgeführt
werden, um Kompatibilitätsprobleme zu vermeiden.

• Circe bereitet es Probleme, die JSON-Ausgabe nach Modifikation der Ursprungsklasse
nach Serialisierung wieder interpretieren zu können. Das ist daraus resultierend, dass
JSON geparst wird und zum Beispiel eine Änderung des Namens eines Attributs nicht
erkennt. Abhilfe bei dieser Problemstellung schafft der Umweg aus Abschnitt 3.

5 siehe https://github.com/circe/circe

36

https://github.com/circe/circe

3.3 Google Protocol Buffers Serialisierer/De-Serialisierer (ScalaPB)

3.3 Google Protocol Buffers Serialisierer/De-Serialisierer (ScalaPB)

Protobuf ist ein binäres Datenformat mit einer eigenen Schnittstellen-Beschreibungssprache,
entwickelt von der Firma Google. Protobuf ist unabhängig von der verwendeten
Programmiersprache. Derzeit werden offiziell folgende Sprache unterstützt [GOO]:

• Java (damit auch in Scala - siehe Abschnitt 2.4)

• Python

• Objective-C

• C++

• Dart (erst ab Protobuf-Version 3)

• Go (erst ab Protobuf-Version 3)

• Ruby (erst ab Protobuf-Version 3)

• C# (erst ab Protobuf-Version 3)

Verwendung

1. Bei der Verwendung von Protobuf wird zunächst die Struktur der Daten definiert.
Diese Definition wird als Schnittstellen-Beschreibung genutzt.

2. Diese Schnittstellen-Beschreibung wird von einem Protobuf-Compiler, zum Beispiel in
Form einer Klasse, in eine Zielprogrammiersprache übersetzt.

3. Dem Entwickler stehen nun durch die generierten Klassen, Methoden zum
Serialisieren und Deserialisieren zur Verfügung.

Schnittstellen-Beschreibung und Scala

Die Struktur der Daten wird innerhalb einer .proto-Datei definiert. Eine Definition wird
hier exemplarisch aufgezeigt:

message CarDb {
int32 id = 1;
int32 horsepower = 2;
string name = 3;

}

• message CarDb: Definiert den Klassennamen in Scala
(case class CarDB(...)).

• int32 id = 1: Deklariert ein Attribut in Scala (id: Int). int32 gibt hierbei den
Datentyp des Attributs an. = 1 weist dieses Attribut einer Protobuf-Feldnummer zu.
Diese Nummer sollte innerhalb einer Klasse nicht doppelt vorkommen und wird für
die interne Verarbeitung beim Serialisieren und Deserialisieren benötigt.

37

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

Implementierung durch ScalaPB

Diese Arbeit geht nicht auf die Logik bzw. Implementierung dieses SerDes ein, wie bereits
im Abschnitt 1.5 beschrieben. Diese Arbeit verwendet den Protobuf-Compiler ScalaPB6.
ScalaPB wurde aus folgenden Gründen als Vertreter eines Protobuf-Compilers für Scala
gewählt:

• Die Recherche nach einem Protobuf-Compiler für Scala lieferte nur zwei sinnvolle
Ergebnisse (ScalaPB und protoless7). Die Entwicklung von ScalaPB hat im Vergleich zu
protoless eine wesentlich höhere Beteiligung (42 Entwickler zu einem Entwickler).

• ScalaPB lässt sich direkt in SBT als Plugin einbinden und wird vor dem Kompilieren
des Scala-Quellcodes angestoßen.

ScalaPB stellt nach dem Kompilieren Scala-Klassen mit diversen Methoden für die
Serialisierung und Deserialisierung bereit:

• .toByteArray: Diese Methode serialisiert ein Objekt zu einer Byte-Folge.

• .parseFrom: Diese Methode deserialisiert eine Byte-Folge zu einem Objekt. Bei
dieser Methode handelt es sich nicht um eine statische Methode, d.h. es muss erst ein
konkretes Objekt erzeugt werden, um diese zu verwenden. Alle Attribute dieses
Objekts werden mit null initialisiert, was für einen Scala-Entwickler unüblich ist. Erst
durch den Aufruf der Methode wird das Objekt mit sinnvollen Daten befüllt.

• .getField: Diese Methode deserialisiert ein einzelnes Attribut aus einer Byte-Folge.

Hinweis: Die Aufzählung ist nicht vollständig.

Ein Beispiel

Exemplarisch wird durch die Protobuf-Serialisierung aus dem Scala-Objekt

CarDb(id = 0, name = "BMW F30", horsepower = 200)

diese Byte-Folge:

Hinweis: Um diese Byte-Folge darzustellen, wurde diese in eine Zeichenkette konvertiert.
Nicht druckbare Zeichen werden nicht abgebildet.

6 siehe https://github.com/scalapb/ScalaPB
7 siehe https://github.com/julien-lafont/protoless

38

https://github.com/scalapb/ScalaPB
https://github.com/julien-lafont/protoless

3.3 Google Protocol Buffers Serialisierer/De-Serialisierer (ScalaPB)

Hinweise

• Die durch dieses Verfahren serialisierten Objekte können auch nach einer Veränderung
der Protobuf-Beschreibung wieder deserialisiert werden (mehr dazu im Abschnitt 3.3).

• Diese Arbeit geht auf proto3 ein und nicht auf den Vorgänger (proto2) (mehr dazu
im Abschnitt 1.5). Das Schlüsselwort required steht in proto3 nicht mehr zur
Verfügung. Dadurch kann in Scala nicht mehr direkt ein optionales Attribut (zum
Beispiel Option[Int]) abgebildet werden.

• Die grundlegende Protobuf-Beschreibungssprache kann durch zusätzliche
Bibliotheken erweitert werden. So ist es zum Beispiel möglich, über die Bibliothek
google/protobuf/wrappers.proto ein optionales Attribut (über
google.protobuf.Int32Value auf Option[Int]) abbilden zu können. Falls das
Attribut bei einer in der Vergangenheit serialisierten Byte-Folge nicht abgebildet
wurde, wird das Attribut nicht mit dem Wert None deserialisiert, sondern mit dem
Wert null.

• Klassen, die durch ScalaPB erzeugt worden sind, bieten passende Schnittstellen an, die
mit der Akka-internen Protobuf-Integration kompatibel sind. Daher reicht es aus,
wenn ein SerDes unter akka.remote.serialization.ProtobufSerializer
bekannt gemacht und den zu verarbeitenden Klassen zugewiesen wird (siehe
Abschnitt 3).

• Akka selbst verwendet Protobuf, um Nachrichten zwischen Aktoren serialisieren bzw.
deserialisieren zu können [Akkh]. Wenn eine Nachrichten nicht als Protobuf
kompatible Klasse vorliegt, muss diese erst zu einer Byte-Folge serialisiert und in ein
Protobuf kompatibles Objekt übertragen werden. Dieser Schritt kann eingespart
werden, wenn Klassen aus ScalaPB verwendet werden.

Abwärtskompatible Deserialisierung in Protobuf

Die durch Protobuf serialisierten Objekte können auch nach einer Veränderung der
Protobuf-Beschreibung wieder deserialisiert werden. In der Praxis kann dies zu Konflikten
(zum Beispiel eine Änderung des Datentyps eines Attributs von Float auf Double) führen,
da die Byte-Folge nicht mehr korrekt deserialisiert werden kann. Um das Risiko eines
Konflikts zu reduzieren, können folgende Empfehlungen beachtet werden:

• Protobuf-Feldnummern dürfen innerhalb einer Klasse nicht mehrfach vergeben
werden.

• Der Datentyp eines Attributs sollte nicht nachträglich geändert werden. Falls das
Attribut bei einer in der Vergangenheit serialisierten Byte-Folge anders abgebildet
worden ist, scheitert die Deserialisierung.

• Bei Entfernung eines Attributs aus einer Klasse sollte dieses nicht gelöscht, sondern
nur auskommentiert werden. Dadurch wird die Gefahr einer doppelten und damit
falschen Feldnummern-Zuweisung durch zum Beispiel einen anderen Entwickler
reduziert.

• Es sollten keine Protobuf-Attribute (trotz gleicher Protobuf-Feldnummer) umbenannt
werden, da diese sonst beim Deserialisieren nicht immer richtig interpretiert werden.

39

3 Serialisierer/De-Serialisierer im Akka Persistence Umfeld

• Bei der Verwendung des Schlüsselworts repeated (in Scala als Vector abgebildet)
ist Vorsicht geboten. Falls das Attribut bei einer in der Vergangenheit serialisierten
Byte-Folge nicht abgebildet worden ist, wird das Attribut nicht mit dem Wert
Vector.empty deserialisiert, sondern mit dem Wert null.

• Bei der Verwendung von Attributen vom Typ Boolean ist ebenfalls Vorsicht geboten.
Falls das Attribut bei einer in der Vergangenheit serialisierten Byte-Folge nicht
abgebildet worden ist, wird das Attribut nicht mit dem Wert null deserialisiert,
sondern mit dem Wert false.

40

4 Fazit

Um die Schnelligkeit und Praxistauglichkeit (siehe Definitionen im Abschnitt 1.4) der
SerDes zu eruieren, wurden zwei Experimente konzipiert:

• Experiment E1 Vollständige Umgebung: Dieses Experiment wurde entwickelt, um die
ausgewählten SerDes in einem vollständigen Umfeld zu testen. Ein vollständiges
Umfeld stellt einen minimalen Akka Persistence Aufbau mit einem
Test-Aktorensystem und mit einem Test-Aktor dar. Das Experiment und das
vollständige Umfeld werden im Abschnitt 2.4.1 beschrieben.

• Experiment E2 Benchmark Umgebung: Dieses Experiment testet isoliert die
ausgewählten SerDes bezüglich Geschwindigkeit über ScalaMeter. Das Experiment
wird im Abschnitt 2.4.2 beschrieben.

Diese Experimente wurden auf drei verschiedenen Referenzsystemen durchgeführt:

• Referenzsystem R1 Windows 10

• Referenzsystem R2 iMac

• Referenzsystem R3 AWS EC2

Auszüge der Eigenschaften der Referenzsysteme können dem Abschnitt A.1 entnommen
werden.

4.1 Ergebnisse aus den Durchführungen der Experimente

Es wurden folgende Durchführungen durchgeführt:

1. D1 von E1 und E2 auf Referenzsystem R1 Windows 10

2. D1 von E1 und E2 auf Referenzsystem R2 iMac

3. D1 von E1 und E2 auf Referenzsystem R3 AWS EC2

4. D2 von E1 und E2 auf Referenzsystem R3 AWS EC2

Alle gesetzten Test-Parameter, sowie die vollständigen Ergebnisse und Visualisierungen
können dem Abschnitt A.3 entnommen werden.

Hinweis: Da die Testdaten vor jedem Lauf (vor der Durchführung von E1 und E2)
automatisch generiert werden (mehr dazu im Abschnitt 2.4), ist ein globaler Vergleich nicht
möglich.

41

4 Fazit

D1 von E1 und E2 auf Referenzsystem R1 Windows 10

Die Ergebnisse werden in Abbildung A.1 visualisiert. Bei dieser Durchführung wurden E1
und E2 3-mal getestet:

Datum E1 Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
Avg. 3200s 3227s 3044s 891ms 243ms 20ms
Med. 3187s 3191s 3059s 889ms 247ms 20ms

Um mehr Ressourcen (zum Beispiel Arbeitsspeicher) auf dem Zielsystem nutzen zu können
(mehr dazu im Abschnitt 2.4), wurde SBT wie folgt parametrisiert:
export SBT_OPTS="-Xms4G -Xmx10G".

• Die einzelnen Ergebnisse aus E1 unterliegen starken Messschwankungen (mehr dazu
im Abschnitt 2.4). Ein Vergleich ist bei dieser Durchführung nicht aussagekräftig. Eine
Vergrößerung der Testmenge war auf diesem Referenzsystem nicht möglich, da nicht
genug Ressourcen (Arbeitsspeicher) zur Verfügung standen.

• Die Ergebnisse aus E2 sind aussagekräftig und ermöglichen es, die verschiedenen
SerDes bezüglich Schnelligkeit gegenüberzustellen.

D1 von E1 und E2 auf Referenzsystem R2 iMac

Die Ergebnisse werden in Abbildung A.2 visualisiert. Bei dieser Durchführung wurden E1
und E2 12-mal getestet:

Datum E1 Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
Avg. 2225s 2703s 2270s 292ms 163ms 22ms
Med. 2229s 2696s 2270s 292ms 162ms 19ms

Um mehr Ressourcen (zum Beispiel Arbeitsspeicher) auf dem Zielsystem nutzen zu können
(mehr dazu im Abschnitt 2.4), wurde SBT wie folgt parametrisiert:
export SBT_OPTS="-Xms4G -Xmx13G".

• Die einzelnen Ergebnisse aus E1 unterliegen starken Messschwankungen (mehr dazu
im Abschnitt 2.4). Ein Vergleich ist bei dieser Durchführung nicht aussagekräftig. Eine
Vergrößerung der Testmenge war auf diesem Referenzsystem nicht möglich, da nicht
genug Ressourcen (Arbeitsspeicher) zur Verfügung standen.

• Die Ergebnisse aus E2 sind aussagekräftig und ermöglichen es, die verschiedenen
SerDes bezüglich Schnelligkeit gegenüberzustellen.

D1 von E1 und E2 auf Referenzsystem R3 AWS EC2

Die Ergebnisse werden in Abbildung A.3 visualisiert. Bei dieser Durchführung wurden E1
und E2 2-mal getestet:

Datum E1 Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
Avg. 2902s 2013s 2765s 768ms 236ms 31ms
Med. 2902s 2013s 2765s 768ms 236ms 31ms

42

4.2 Schnelligkeit der Serialisierer/De-Serialisierer

Um mehr Ressourcen (zum Beispiel Arbeitsspeicher) auf dem Zielsystem nutzen zu können
(mehr dazu im Abschnitt 2.4), wurde SBT wie folgt parametrisiert:
export SBT_OPTS="-Xms4G -Xmx14G".

• Die einzelnen Ergebnisse aus E1 unterliegen starken Messschwankungen (mehr dazu
im Abschnitt 2.4). Ein Vergleich ist bei dieser Durchführung nicht aussagekräftig. Eine
Vergrößerung der Testmenge war auf diesem Referenzsystem möglich (siehe D2).

• Die Ergebnisse aus E2 sind aussagekräftig und ermöglichen es, die verschiedenen
SerDes bezüglich Schnelligkeit gegenüberzustellen.

D2 von E1 und E2 auf Referenzsystem R3 AWS EC2

Die Ergebnisse werden in Abbildung A.4 visualisiert. Bei dieser Durchführung wurden E1
und E2 2-mal getestet:

Datum E1 Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
Avg. 28282s 23486s 20238s 3861ms 1085ms 156ms
Med. 28282s 23486s 20238s 3861ms 1085ms 156ms

Um mehr Ressourcen (zum Beispiel Arbeitsspeicher) auf dem Zielsystem nutzen zu können
(mehr dazu im Abschnitt 2.4), wurde SBT wie folgt parametrisiert:
export SBT_OPTS="-Xms4G -Xmx14G".

• Durch die Vergrößerung der Testmenge war es möglich, die Messschwankungen zu
reduzieren. Die Ergebnisse aus E1 sind daher aussagekräftig und ermöglichen es, die
verschiedenen SerDes bezüglich Schnelligkeit gegenüberzustellen.

• Die Ergebnisse aus E2 sind aussagekräftig und ermöglichen es, die verschiedenen
SerDes bezüglich Schnelligkeit gegenüberzustellen.

4.2 Schnelligkeit der Serialisierer/De-Serialisierer

Bereits der Abschnitt 4.1 zeigte, dass es nicht einfach ist, aussagekräftige Ergebnisse zu
erhalten:

Durchführung Referenzsystem E1 aussagekräftig E2 aussagekräftig
D1 Referenzsystem

R1 Windows 10
nein ja

D1 Referenzsystem
R2 iMac

nein ja

D1 Referenzsystem
R3 AWS EC2

nein ja

D2 Referenzsystem
R3 AWS EC2

ja ja

43

4 Fazit

Erst durch eine starke Vergrößerung der Testmenge mit

• numberOfUpdates = 1000000 (D1 auf Referenzsystem R3 AWS EC2) auf

• numberOfUpdates = 5000000 (D2 auf Referenzsystem R3 AWS EC2)

konnte auch ein aussagekräftiges Ergebnis von der Durchführung von E1 ermittelt werden.

Die Durchführungen von E2 lieferten immer aussagekräftige Ergebnisse. Wenn man die
einzelnen SerDes isoliert miteinander vergleicht, ist es sinnvoll diese bezüglich Schnelligkeit
gegenüberzustellen.

Schlussfolgernd

• Da viele Faktoren zu starken Messschwankungen (siehe Abschnitt 2.4) führen, ist es
nicht einfach, die gewählten SerDes bezüglich Schnelligkeit miteinander zu
vergleichen.

• Erst durch eine starke Vergrößerung der Testmenge konnte ein aussagekräftiges
Ergebnis provoziert werden. Eine solch große sequentielle Verarbeitungsmenge ist in
der Praxis selten vertreten. Die reine Serialisierung und Deserialisierung nimmt in
einer Akka Persistence Umgebung nur wenig Laufzeit in Anspruch. Daher ist es
sinnvoll, das gesamte System bezüglich Schnelligkeit erst an anderen Stellen (zum
Beispiel durch das Austauschen von Sortieralgorithmen oder das Einbauen von
schnellerer Hardware) zu optimieren.

• Soll das System aber an dieser Stelle optimiert werden, können die SerDes isoliert (wie
in E2 gezeigt) miteinander bezüglich Geschwindigkeit verglichen werden.

4.3 Praxistauglichkeit der Serialisierer/De-Serialisierer

Praxistauglichkeit1 ist nicht direkt messbar und hängt stark vom Anwendungsfall ab. Diese
Arbeit geht von einem einfachen Anwendungsfall aus:

• Das System verwaltet Daten konsistent.

• Das System sollte auch nach Neustart seinen letzten Zustand vollständig
wiederherstellen können.

• Das System wird im Laufe des Softwarelebenszyklus modifiziert. Daten, die nicht
mehr zu dem neuen System passen, müssen aber dennoch korrekt verarbeitet werden.

Aus diesem Anwendungsfall lassen sich exemplarisch folgende Anforderungen an den
SerDes ableiten:

• Anforderung 1: Korrektes Deserialisieren von Byte-Folgen auch nach Veränderung
der Ursprungsklasse nach dem Serialisieren;

• Anforderung 2: Geringer Konfigurationsaufwand für einen Entwickler;

1 siehe Definition im Abschnitt 1.4

44

4.3 Praxistauglichkeit der Serialisierer/De-Serialisierer

• Anforderung 3: Geringer Aufwand bei der Fehlersuche für einen Entwickler.

Durch diese Anforderungen lassen sich die SerDes in diesem Umfeld miteinander
vergleichen.

Vergleich nach Anforderung 1

• Java-Standardserialisierung: Diese Form der Serialisierung/Deserialisierung ist nicht
praxistauglich, da diese zum Beispiel keine korrekte Deserialisierung auch nach
Veränderung der Ursprungsklasse nach dem Serialisieren garantieren kann (mehr
dazu im Abschnitt 3.1). Dies ist zwar über einen Umweg (mehr dazu im Abschnitt 3)
möglich, wirkt sich aber negativ auf die Anforderung 2 und 3 aus.

• JSON-Serialisierung durch Circe: Diese Form der Serialisierung/Deserialisierung ist
nicht praxistauglich, da diese zum Beispiel keine korrekte Deserialisierung auch nach
Veränderung der Ursprungsklasse nach dem Serialisieren garantieren kann (mehr
dazu im Abschnitt 3.2). Dies ist zwar über einen Umweg (mehr dazu im Abschnitt 3)
möglich, wirkt sich aber negativ auf die Anforderung 2 und 3 aus.

• Protobuf-Serialisierung durch ScalaPB: Diese Form der
Serialisierung/Deserialisierung ist praxistauglich, da diese zum Beispiel eine korrekte
Deserialisierung auch nach Veränderung der Ursprungsklasse nach dem Serialisieren
garantieren kann. Es gelten jedoch Einschränkungen, die im Abschnitt 3.3 beschrieben
werden.

Bei dieser Gegenüberstellung siegt die Protobuf-Serialisierung durch ScalaPB.

Vergleich nach Anforderung 2

• Java-Standardserialisierung: Diese Form der Serialisierung/Deserialisierung muss
nicht explizit konfiguriert werden, da diese standardmäßig verwendet wird (mehr
dazu im Abschnitt 3). Um eine korrekte Deserialisierung auch nach Veränderung der
Ursprungsklasse nach dem Serialisieren ermöglichen zu können, muss sich mit einem
Umweg (siehe Abschnitt 3) beholfen werden.

• JSON-Serialisierung durch Circe: Diese Form der Serialisierung/Deserialisierung
kann nicht direkt verwendet werden und muss über einen eigenen SerDes in Form
einer Klasse eingebunden und in der Konfigurationsdatei angegeben werden (mehr
dazu im Abschnitt 3). Um eine korrekte Deserialisierung auch nach Veränderung der
Ursprungsklasse nach dem Serialisieren ermöglichen zu können, muss sich mit einem
Umweg (siehe Abschnitt 3) beholfen werden.

• Protobuf-Serialisierung durch ScalaPB: Diese Form der
Serialisierung/Deserialisierung wird in Akka Persistence automatisch unterstützt, da
Akka selbst Protobuf benutzt, um Nachrichten zwischen Aktoren serialisieren bzw.
deserialisieren zu können. Daher ist die Konfiguration nicht aufwändig (mehr dazu im
Abschnitt 3.3).

Bei dieser Gegenüberstellung siegt die Protobuf-Serialisierung durch ScalaPB.

45

4 Fazit

Vergleich nach Anforderung 3

• Java-Standardserialisierung: Das Produkt dieser Serialisierung ist nicht vom
Menschen lesbar. Fehler, die durch diese Serialisierung entstehen, können nicht
einfach gefunden und behoben werden.

• JSON-Serialisierung durch Circe: Das Produkt dieser Serialisierung ist vom
Menschen lesbar. Fehler, die durch diese Serialisierung entstehen, können einfach
gefunden und behoben werden.

• Protobuf-Serialisierung durch ScalaPB: Das Produkt dieser Serialisierung ist nicht
vom Menschen lesbar. Fehler, die durch diese Serialisierung entstehen, können nicht
einfach gefunden und behoben werden.

Bei dieser Gegenüberstellung siegt die JSON-Serialisierung durch Circe.

Schlussfolgernd

• Die Praxistauglichkeit ist nicht direkt messbar und hängt stark vom Anwendungsfall
ab.

• Erst durch den Anwendungsfall und die daraus abgeleiteten Anforderungen an den
SerDes, können diese mit einander verglichen werden.

• Die Java-Standardserialisierung eignet sich gut für die lokale Entwicklung, da nichts
extra konfiguriert werden muss. Diese Form der Serialisierung bzw. Deserialisierung
sollte nicht in einer Produktivumgebung verwendet werden.

• Die JSON-Serialisierung durch Circe eignet sich für die lokale Entwicklung, da das
Produkt der Serialisierung vom Menschen lesbar ist. Das kann bei der Fehlersuche
helfen. Diese Form der Serialisierung bzw. Deserialisierung kann in einer
Produktivumgebung verwendet werden.

• Die Protobuf-Serialisierung durch ScalaPB eignet sich, auf Grund zahlreicher Vorteile
(mehr dazu im Abschnitt 3.3), für eine Produktivumgebung.

46

A Anhänge

A.1 Auszüge aus den Eigenschaften der Referenzsysteme

Auszug der Eigenschaften des Referenzsystem R1 Windows 10

Name der Eigenschaft Wert der Eigenschaft

Betriebssystem Windows 10 Pro
Architektur: 64-Bit
Prozessorbezeichnung: Intel(R) Core(TM) i7-2600 3.40 GHz
Prozessor Anzahl der Kerne: 4
Arbeitsspeicher: 12 GB
Festplatte Art: HDD

Auszug der Eigenschaften des Referenzsystem R2 iMac

Name der Eigenschaft Wert der Eigenschaft

Bezeichnung: iMac (21,5", Ende 2013)
Betriebssystem macOS Sierra Version 10.12.6
Architektur: 64-Bit
Prozessorbezeichnung: 2,7 GHz Intel Core i5
Prozessor Anzahl der Kerne: 4
Arbeitsspeicher: 16 GB 1600 MHz DDR3
Festplatte Art: SSD

Auszug der Eigenschaften des Referenzsystem R3 AWS EC2

Name der Eigenschaft Wert der Eigenschaft

EC2-Image-Bezeichnung: ami-0bdf93799014acdc4
EC2-Instanz-Bezeichnung: t2.xlarge
Betriebssystem: Ubuntu Server 18.04 LTS (HVM)
Architektur: 64-Bit
Prozessor Anzahl der Kerne: 4
Arbeitsspeicher: 16 GB
Festplatte Art: SSD

47

A Anhänge

A.2 Versionen der verwendeten Komponenten

Bezeichnung Version
Java JDK1 8
Scala2 2.12.7
Sbt3 1.2.6
Akka Actors4 2.5.18
Akka Persistence5 2.5.18
Circe6 0.10.0
LevelDB JNI7 1.8
Port of LevelDB to Java8 0.7
ScalaMeter9 0.8.2
ScalaPB10 0.8.1

1 https://www.oracle.com/technetwork/java/javase/
2 https://www.scala-lang.org/
3 https://www.scala-sbt.org/
4 https://doc.akka.io/docs/akka/2.5/actors.html
5 https://doc.akka.io/docs/akka/2.5/persistence.html
6 https://circe.github.io/circe/
7 https://github.com/fusesource/leveldbjni
8 https://github.com/dain/leveldb
9 https://scalameter.github.io/
10 https://github.com/scalapb/ScalaPB

Die verwendenden Komponenten werden im Abschnitt 2.4 beschrieben.

48

https://www.oracle.com/technetwork/java/javase/
https://www.scala-lang.org/
https://www.scala-sbt.org/
https://doc.akka.io/docs/akka/2.5/actors.html
https://doc.akka.io/docs/akka/2.5/persistence.html
https://circe.github.io/circe/
https://github.com/fusesource/leveldbjni
https://github.com/dain/leveldb
https://scalameter.github.io/
https://github.com/scalapb/ScalaPB

A.3 Ergebnisse aus den Durchführungen der Experimente

A.3 Ergebnisse aus den Durchführungen der Experimente

Ergebnisse aus den Experimenten Referenzsystem R1 Windows 10

Abbildung A.1 Visualisierung der Ergebnisse Durchführung 1 (Referenzsystem R1 Windows 10)

Datum E1 Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
02.02.2019 3164s 3191s 3059s 889ms 265ms 20ms
02.02.2019 3250s 3330s 3072s 900ms 216ms 19ms
03.02.2019 3187s 3160s 3001s 883ms 247ms 20ms
Avg. 3200s 3227s 3044s 891ms 243ms 20ms
Med. 3187s 3191s 3059s 889ms 247ms 20ms

Die Daten aus der Tabelle werden in der Abbildung A.1 visualisiert. Die Zahlen wurden
kaufmännisch ohne Nachkommastellen gerundet. Die Testparameter lauteten:

Konfiguration Name Wert
testSet numberOfTestCars 100000
testSet carNameStringMaxLength 200
testSet complexCarNotesStringMaxLength 900
experimentMode timeoutInSeconds 60000
experimentMode actorSnapshotInterval 100000
experimentMode numberOfAdds 100000
experimentMode numberOfUpdates 5000000
experimentMode testCar wahr
experimentMode testComplexCar wahr
experimentMode waitForProfilerEnter falsch
benchmarkMode numberOfSingleTests 10000
benchmarkMode testCar wahr
benchmarkMode testComplexCar wahr

49

A Anhänge

Ergebnisse aus den Experimenten Referenzsystem R2 iMac

Abbildung A.2 Visualisierung der Ergebnisse Durchführung 1 (Referenzsystem R2 iMac)

Datum E1 Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
28.01.2019 2245s 2752s 2325s 290ms 159ms 18ms
28.01.2019 2193s 2696s 2320s 295ms 161ms 19ms
29.01.2019 2217s 2728s 2277s 296ms 168ms 34ms
01.02.2019 2287s 2741s 2266s 294ms 163ms 19ms
02.02.2019 2218s 2659s 2200s 298ms 162ms 21ms
02.02.2019 2189s 2764s 2319s 289ms 163ms 18ms
02.02.2019 2240s 2695s 2274s 292ms 164ms 18ms
02.02.2019 2244s 2624s 2230s 291ms 171ms 18ms
03.02.2019 2245s 2694s 2293s 292ms 165ms 19ms
03.02.2019 2240s 2688s 2249s 296ms 159ms 35ms
03.02.2019 2196s 2701s 2259s 285ms 162ms 19ms
04.02.2019 2189s 2694s 2232s 290ms 155ms 19ms
Avg. 2225s 2703s 2270s 292ms 163ms 22ms
Med. 2229s 2696s 2270s 292ms 162ms 19ms

Die Daten aus der Tabelle werden in der Abbildung A.2 visualisiert. Die Zahlen wurden
kaufmännisch ohne Nachkommastellen gerundet. Die Testparameter lauteten:

Konfiguration Name Wert
testSet numberOfTestCars 100000
testSet carNameStringMaxLength 200
testSet complexCarNotesStringMaxLength 900
experimentMode timeoutInSeconds 60000
experimentMode actorSnapshotInterval 100000
experimentMode numberOfAdds 100000
experimentMode numberOfUpdates 5000000

50

A.3 Ergebnisse aus den Durchführungen der Experimente

experimentMode testCar wahr
experimentMode testComplexCar wahr
experimentMode waitForProfilerEnter falsch
benchmarkMode numberOfSingleTests 10000
benchmarkMode testCar wahr
benchmarkMode testComplexCar wahr

Ergebnisse aus den Experimenten Referenzsystem R3 AWS EC2

Abbildung A.3 Visualisierung der Ergebnisse Durchführung 1 (Referenzsystem R3 AWS EC2)

Datum E1 Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
04.01.2019 2083s 1958s 1802s 779ms 219ms 31ms
04.01.2019 2100s 2067s 3727s 756ms 253ms 31ms
Avg. 2902s 2013s 2765s 768ms 236ms 31ms
Med. 2902s 2013s 2765s 768ms 236ms 31ms

Die Daten aus der Tabelle werden in der Abbildung A.3 visualisiert. Die Zahlen wurden
kaufmännisch ohne Nachkommastellen gerundet. Die Testparameter lauteten:

Konfiguration Name Wert
testSet numberOfTestCars 100000
testSet carNameStringMaxLength 200
testSet complexCarNotesStringMaxLength 900
experimentMode timeoutInSeconds 60000
experimentMode actorSnapshotInterval 100000
experimentMode numberOfAdds 100000
experimentMode numberOfUpdates 1000000
experimentMode testCar wahr
experimentMode testComplexCar wahr

51

A Anhänge

experimentMode waitForProfilerEnter falsch
benchmarkMode numberOfSingleTests 10000
benchmarkMode testCar wahr
benchmarkMode testComplexCar wahr

Abbildung A.4 Visualisierung der Ergebnisse Durchführung 2 (Referenzsystem R3 AWS EC2)

Datum E1 Java E1 Circe E1 ScalaPB E2 Java E2 Circe E2 ScalaPB
05.01.2019 28280s 23415s 20257s 3940ms 1108ms 152ms
06.01.2019 28283s 23557s 20219s 3781ms 1062ms 160ms
Avg. 28282s 23486s 20238s 3861ms 1085ms 156ms
Med. 28282s 23486s 20238s 3861ms 1085ms 156ms

Die Daten aus der Tabelle werden in der Abbildung A.4 visualisiert. Die Zahlen wurden
kaufmännisch ohne Nachkommastellen gerundet. Die Testparameter lauteten:

Konfiguration Name Wert
testSet numberOfTestCars 100000
testSet carNameStringMaxLength 200
testSet complexCarNotesStringMaxLength 900
experimentMode timeoutInSeconds 60000
experimentMode actorSnapshotInterval 100000
experimentMode numberOfAdds 100000
experimentMode numberOfUpdates 5000000
experimentMode testCar wahr
experimentMode testComplexCar wahr
experimentMode waitForProfilerEnter falsch
benchmarkMode numberOfSingleTests 50000
benchmarkMode testCar wahr
benchmarkMode testComplexCar wahr

52

Literaturverzeichnis

[ACM] The ACM Digital Library - A universal modular ACTOR formalism for artificial
intelligence. https://dl.acm.org/citation.cfm?id=1624804. Abgerufen am
28.02.2019.

[Akka] Akka.io (2018): Offizielle Dokumentation - Multiple persistence plugin
configurations. https://doc.akka.io/docs/akka/2.5/persistence.html#multiple-
persistence-plugin-configurations. Abgerufen am
08.03.2019.

[Akkb] Akka.io (2018): Offizielle Dokumentation - A Word About Java Serialization.
https://doc.akka.io/docs/akka/2.5.4/java/serialization.html#a-word-about-java-
serialization. Abgerufen am
08.03.2019.

[Akkc] Akka.io (2018): Offizielle Dokumentation - Ausschnitt Serialisierung - Creating new
Serializers. https://doc.akka.io/docs/akka/2.5/serialization.html#customization.
Abgerufen am 08.03.2019.

[Akkd] Akka.io (2018): Offizielle Dokumentation. https://akka.io/docs. Abgerufen am
09.11.2018.

[Akke] Akka.io (2018): Offizielle Dokumentation - Ausschnitt Akka Persistence mit Event
Sourcing.
https://doc.akka.io/docs/akka/current/persistence.html?language=scala#event-
sourcing. Abgerufen am
20.12.2018.

[Akkf] Akka.io (2018): Offizieller Internetauftritt. https://akka.io. Abgerufen am
09.11.2018.

[Akkg] Akka.io (2018): Offizielle Dokumentation - Ausschnitt Akka Persistence.
https://doc.akka.io/docs/akka/current/persistence.html#introduction. Abgerufen
am 20.12.2018.

[Akkh] Akka.io (2018): Offizielle Dokumentation - Ausschnitt Serialisierung. htt-
ps://doc.akka.io/docs/akka/current/serialization.html?language=scala#introduction.
Abgerufen am 26.02.2019.

[ALV] Alvin Alexander - Scala: How to add new methods to existing classes.
https://alvinalexander.com/scala/scala-how-to-add-new-methods-to-existing-
classes. Abgerufen am
04.03.2019.

[BUL] Bullhost - Definition bzw. Erklaerung: Binaerkompatibel.
https://www.bullhost.de/b/binaerkompatibel.html. Abgerufen am 28.02.2019.

53

Literaturverzeichnis

[CQR] CQRS - Provided by Edument - Entire FAQ. http://www.cqrs.nu/faq. Abgerufen
am 28.02.2019.

[GITa] GitHub-Seite von Circe. https://github.com/circe/circe. Abgerufen am 01.01.2019.

[GITb] GitHub-Seite von LevelDB JNI. https://github.com/fusesource/leveldbjni.
Abgerufen am 01.01.2019.

[GITc] GitHub-Seite von Port of LevelDB to Java. https://github.com/dain/leveldb.
Abgerufen am 01.01.2019.

[GITd] GitHub-Seite von ScalaMeter. https://scalameter.github.io. Abgerufen am
01.01.2019.

[GITe] GitHub-Seite von ScalaPB. https://github.com/scalapb/ScalaPB. Abgerufen am
01.01.2019.

[GOO] Google - Protocol Buffers. https://developers.google.com/protocol-buffers/.
Abgerufen am 09.03.2019.

[Jav] Java SE Development Kit 8 Download Seite.
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html. Abgerufen am
01.01.2019.

[JAX] Jaxenter - Java Serialisierung. https://jaxenter.de/aus-der-java-trickkiste-java-
serialisierung-wann-passt-sie-wann-nicht-35558. Abgerufen am
09.03.2019.

[JSO] JSON - Einführung in JSON. https://www.json.org/json-de.html. Abgerufen am
09.03.2019.

[Kru09] G. Krueger. Serialisierung. In Handbuch der Java-Programmierung (ISBN:
978-3-8273-2874-8,3-8273-2373-8), S. 963. Addison-Wesley, 2009.

[MAR] Martin Fowler - CommandQuerySeparation.
https://martinfowler.com/bliki/CommandQuerySeparation.html. Abgerufen am
28.02.2019.

[MIC] Microsoft - Pattern: Event sourcing.
https://microservices.io/patterns/data/event-sourcing.html. Abgerufen am
28.02.2019.

[Ode08] M. Odersky. Good actors style. In Programming in Scala (ISBN:
0-9815316-0-1,978-0-9815316-0-1), S. 597. Artima Press, 2008.

[OPE] Rheinwerk Openbook - Java ist auch eine Insel - Persistente Objekte und
Serialisierung. http://openbook.rheinwerk-
verlag.de/javainsel9/javainsel_17_010.htm#mjfbe8cb1105d7dfaf6adbc23f31c81b93.
Abgerufen am 09.03.2019.

[Pac18] V. F. Pacheco. Understanding event sourcing. In Microservice patterns and best
practices (ISBN: 978-1-78847-120-6,1-78847-120-2), S. 115. Packt Publishing, 2018.

54

Literaturverzeichnis

[PICa] Brianstorti - The actor model in 10 minutes - Bild Exemplarische Darstellung
Aktorenmodell. https://www.brianstorti.com/the-actor-model/. Abgerufen am
28.02.2019.

[PICb] Heise Developer - Bild Exemplarische Darstellung CQRS.
https://heise.cloudimg.io/width/610/q80.png-lossy-80.webp-lossy-
80.foil1/_www-heise-de_/developer/imgs/06/9/7/9/0/2/0/abb2-
8f91b55dc4f69adb.png. Abgerufen am
11.03.2019.

[PICc] Wikimedia Commons - Bild Exemplarische Darstellung FIFO.
https://commons.wikimedia.org/wiki/File:Fifo_queue.png. Abgerufen am
28.02.2019.

[SCAa] Offizielle Seite der Programmiersprache Scala - Seamless integration with Java.
https://www.scala-lang.org/old/node/25. Abgerufen am 04.03.2019.

[SCAb] Offizielle Seite der Programmiersprache Scala. https://www.scala-lang.org.
Abgerufen am 01.01.2019.

[Scac] Offizielle Dokumentation von ScalaMeter - Executors.
https://scalameter.github.io/home/gettingstarted/0.5/executors/. Abgerufen am
08.03.2019.

[Scad] Offizielle Dokumentation von ScalaMeter - Generators.
http://scalameter.github.io/home/gettingstarted/0.7/generators/index.html.
Abgerufen am 08.03.2019.

[Scae] Offizielle Dokumentation von ScalaMeter - Simple benchmark.
http://scalameter.github.io/home/gettingstarted/0.7/simplemicrobenchmark/index.html.
Abgerufen am 08.03.2019.

[SCAf] Offizielle Seite des Build-Werkzeugs SBT. https://www.scala-sbt.org. Abgerufen
am 01.01.2019.

[SCAg] Offizielle Seite der Programmiersprache Scala - Traits.
https://docs.scala-lang.org/tour/traits.html. Abgerufen am 04.03.2019.

[TEC] Techopedia - Bytecode. https://www.techopedia.com/definition/3760/bytecode.
Abgerufen am 04.03.2019.

[Ull14] C. Ullenboom. Die eigene SUID. In Java SE 8 Standard-Bibliothek (ISBN:
978-3-8362-2874-9), S. 658–659. Galileo Computing, 2014.

[UNI] Informatik UNI Hamburg - Typisierung. https://wr.informatik.uni-
hamburg.de/_media/teaching/sommersemester_2018/ep-18-schnieders-
typisierung-praesentation.pdf. Abgerufen am
04.03.2019.

55

56

	Einleitung
	Motivation
	Ziel der Arbeit
	Vorgehen
	Definitionen
	Abgrenzung

	Beschreibung Umgebung und Technologie
	Aktorenmodell
	Event Sourcing
	Akka
	Akka Actors
	Akka Persistence

	Aufbau und Ablauf der Experimente
	Experiment E1 Vollständige Umgebung
	Experiment E2 Benchmark Umgebung

	Serialisierer/De-Serialisierer im Akka Persistence Umfeld
	Java Serialisierer/De-Serialisierer (Java-Standardserialisierung)
	JSON Serialisierer/De-Serialisierer (Circe)
	Google Protocol Buffers Serialisierer/De-Serialisierer (ScalaPB)

	Fazit
	Ergebnisse aus den Durchführungen der Experimente
	Schnelligkeit der Serialisierer/De-Serialisierer
	Praxistauglichkeit der Serialisierer/De-Serialisierer

	Anhänge
	Auszüge aus den Eigenschaften der Referenzsysteme
	Versionen der verwendeten Komponenten
	Ergebnisse aus den Durchführungen der Experimente

	Literaturverzeichnis

