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Die Taktraten von Prozessoren ist in den letzten Jahren nicht mehr signifikant
gestiegen. Durch die Annäherung an physikalische Grenzen wachsen die Kosten
bei der Entwicklung und Herstellung, bis zur Einstellung derselben. Da viele
Anwendungen, zum Beispiel Wetter- oder Windkanalsimulationen in der Forschung,
hohe Rechenleistungen benötigen, um in einer absehbaren Zeit zu einem Ergebnis
zu gelangen, liegt es nahe, einen Teil der Berechnungen zu parallelisieren, d.h. ein
Teil der Berechnungen läuft gleichzeitig über zum Beispiel mehrere Prozessor-Kerne
oder Computer ab.

Viele Anwendungen laufen heutzutage in der "Cloud", d.h. die Anwendungen
laufen in einem Rechenzentrum über mehrere Computer verteilt und meistens sehr
stark von der eigentlichen Hardware abstrahiert. Das bedeutet für die Applika-
tionen, dass diese nicht alle Vorteile der Hardware bzw. der zugrundeliegenden
Architektur nutzen (können), im Gegensatz zu Anwendungen, die zum Beispiel in
C++ oder Go systemnah bzw. hardwarenah implementiert worden sind.

Da die Parallelisierung von Berechnungen kein triviales Unterfangen darstellt
und das vor allem die Softwareentwicklung betrifft, möchte diese Arbeit anhand
des Aktorenmodells erläutern, wie man über nebenläufige Programmierung die
Laufzeit einer Anwendung reduziert und wie man Anwendungen über die Verteilung
auf mehrere Computer ausfallsicherer gestalten kann. Diese Arbeit geht aus den
oben genannten Gründen nicht auf die Hardware(-Parallelisierung) ein und richtet
sich daher eher an Softwareentwickler im Cloud-Umfeld als an Entwickler, die
hardwarenah entwickeln.
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1 Einleitung mit Motivation

Die Taktraten von Prozessoren ist in den letzten Jahren nicht mehr signifikant gestiegen.
Durch die Annäherung an physikalische Grenzen wachsen die Kosten bei der Entwicklung und
Herstellung, bis zur Einstellung derselben [Ben15, VII].

Da viele Anwendungen, zum Beispiel Wetter- oder Windkanalsimulationen in der Forschung,
hohe Rechenleistungen benötigen, um in einer absehbaren Zeit zu einem Ergebnis zu gelangen
[Rau12, S.1] [Vog12, S.13], liegt es nahe, einen Teil der Berechnungen zu parallelisieren, d.h.
ein Teil der Berechnungen läuft gleichzeitig über zum Beispiel mehrere Prozessor-Kerne oder
Computer ab.

Folglich lässt sich der Trend erklären, dass viele Prozessor-Hersteller die heutigen Prozessoren
mit mehreren Kernen ausstatten, um zusammen mit anderen Maßnahmen, wie zum Beispiel
eine Verbesserung der Pipeline-Anordnung(en) oder eine Vergrößerung der internen Prozessor-
Caches (L1, L2, L3), den nicht mehr signifikanten Anstieg der Taktraten zu kompensieren.

Viele Anwendungen laufen heutzutage in der "Cloud", d.h. die Anwendungen laufen in einem
Rechenzentrum über mehrere Computer verteilt. Die Sicht auf die eingesetzte Hardware, wie
Prozessoren, wird deutlich abstrakter, da viele Anbieter von Rechenzentren nur gegen Aufpreis
den Einsatz von bestimmter Hardware garantieren und daher zum Beispiel nicht an den Kunden
weitergeben, welche Prozessoren eingesetzt werden. Manche moderne Programmiersprachen
wie Java oder Scala laufen außerdem selbst oft innerhalb einer virtuellen Maschine, im Beispiel
Java in der Java Virtual Machine. In der Cloud ist es auch nicht unüblich, dass die Anwendun-
gen in einem Container laufen, zum Beispiel Docker. Das bedeutet für die Applikationen, dass
diese sehr viel abstrakter auf der Hardware laufen und daher nicht alle Vorteile der Hardware
bzw. der zugrundeliegenden Architektur nutzen (können), im Gegensatz zu Anwendungen, die
zum Beispiel in C++ oder Go systemnah bzw. hardwarenah implementiert worden sind.

Da die Parallelisierung von Berechnungen kein triviales Unterfangen darstellt und das vor
allem die Softwareentwicklung betrifft [Uel19, S.1], möchte diese Arbeit anhand des Aktoren-
modells erläutern, wie man über nebenläufige Programmierung die Laufzeit einer Anwendung
reduziert und wie man Anwendungen über die Verteilung auf mehrere Computer ausfallsicherer
gestalten kann. Diese Arbeit geht aus den oben genannten Gründen nicht auf die Hardware(-
Parallelisierung) ein und richtet sich daher eher an Softwareentwickler im Cloud-Umfeld als an
Entwickler, die hardwarenah entwickeln.

1.1 Einführende Begriffe

Die Begriffe aus diesem Umfeld müssen zunächst abgegrenzt und definiert werden, da es auf die
folgenden Begriffe unterschiedliche Sichten gibt, die sich auch im Laufe der Zeit verändert haben
und je nach Kontext unterschieden werden: So stellt sich beispielsweise ein Softwareentwickler
im Cloud-Umfeld unter dem Begriff Verteilung die Verteilung einer Anwendung über mehrere
Server oder virtuelle Maschinen vor; der Entwickler, der hardwarenah entwickelt, versteht
darunter die Verteilung der Berechnungen über mehrere Prozessor-Kerne.
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1.1.1 Nebenläufig, Parallel und Verteilt

Wenn viele Dinge gleichzeitig passieren, nennt man ein System nebenläufig. Dabei gibt
es Vorgänge, die echt parallel ausgeführt werden können. Manche Vorgänge sehen aber
nur parallel aus, werden aber in Wirklichkeit nur schnell hintereinander ausgeführt; dieses
Verhalten bezeichnet man als quasi-parallel. Auf Software übertragen bedeutet das, dass
die gleichzeitige Abarbeitung von Programmen und die Nutzung von Ressourcen nebenläufig
ist, aber das Betriebssystem unter Berücksichtigung der verbauten Hardware, zum Beispiel
Anzahl der Prozessoren bzw. Prozessor-Kerne, vorgibt, ob Teile dieser Abarbeitung auch echt
parallel stattfinden [Ull16, 15.1].

Die verteilte Verarbeitung, auch Distributed Computing genannt, beschäftigt sich mit
der Koordination von Computern, zum Beispiel innerhalb eines Netzwerks, die eine gemein-
same Aufgabe erledigen. Die eingesetzten Techniken bzw. Werkzeuge, wie Hardware oder
Betriebssysteme der einzelnen Computer können dabei sehr stark variieren [Ben15, S.25], wie
es bei angemieteten (ohne Aufpreis für spezielle Hardware) Cloud-Umgebungen häufig der Fall
ist.

1.1.2 Programme, Threads, Prozesse und Scheduler

Viele moderne Betriebssysteme suggerieren dem Benutzer, dass verschiedene Anwendungen
gleichzeitig ausgeführt werden:

• Bei Computern mit nur einem Prozessor bzw. Prozessor-Kern: Das Betriebssystem
wechselt mit der Abarbeitung der Teile zum Beispiel alle paar Millisekunden. Die
Ausführung ist hierbei nebenläufig, aber nicht echt parallel.

• Bei einem Computer mit mehreren Prozessoren bzw. Prozessor-Kernen: Die Programm-
teile können echt parallel ausgeführt werden.

Der Teil des Betriebssystem, der diese Umschaltung vornimmt, wird als Scheduler, auch
Steuerprogramm genannt, bezeichnet [Ull16, 15.1.1]. Auch in Cloud-Umgebungen sind häufig
ein oder mehrere Scheduler anzutreffen, da meistens verschiedene Berechnungen auf ein und
derselben Maschine oder in einem Rechenzentrum stattfinden. Es gibt verschiedene Arten von
Scheduler, die nicht nur auf einem Computer "umschalten", zum Beispiel der Linux-Scheduler
Completely Fair Scheduler1, sondern auch in Cloud-Umgebungen Berechnungen einplanen,
zum Beispiel das sogenannte Job Scheduling2 von der Firma Amazon Web Services (AWS).
In dieser Arbeit wird nicht weiter auf dieses Thema eingegangen, da dies sonst den Rahmen
sprengen und nicht weiter zum Verständnis beitragen würde.

Ein Programm besteht aus einem oder mehreren Prozessen. Ein Prozess setzt sich aus
dem Programmcode und den Daten zusammen und besitzt einen eigenen Adressraum. Die
Adressräume der einzelnen Prozesse werden durch die virtuelle Speicherverwaltung des Be-
triebssystems getrennt, wodurch es nicht möglich ist, dass ein Prozess in den Speicherraum
eines anderen Prozesses eingreift, da das Betriebssystem das Programm in diesem Fall beenden
würde [Ull16, 15.1.1].

1 siehe https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
2 siehe https://docs.aws.amazon.com/batch/latest/userguide/job_scheduling.html
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Bei modernen Betriebssystemen gehört zu jedem Prozess mindestens ein Thread, auch
Ausführungsstrang genannt. Nach dieser Definition werden nicht mehr die Prozesse nebenläufig
ausgeführt, sondern die Threads. Die Threads innerhalb eines Prozesses teilen sich den gleichen
Adressraum und können untereinander auf ihre öffentlichen Daten zugreifen [Ull16, 15.1.2].

1.1.3 Race Conditions und Deadlocks

Eine Race Condition, auch kritische Wettlaufsituation genannt, bezeichnet eine Konstellati-
on, bei der das Ergebnis einer Operation vom zeitlichen Ablauf bestimmter Einzeloperationen
abhängt [Ben15, S.129] [Rau12, S.149]. Bei der nebenläufigen Programmierung sind diese
Situationen von besonderer Relevanz, da schwer auffindbare, nichtdeterministische Fehler
entstehen können. Erschwerend kommt meistens hinzu, dass durch (lokales) Debugging, zum
Beispiel mithilfe eines Loggers und bei nur einem Prozessor, die Fehler nicht reproduzierbar
und daher schwer aufzufinden sind. Im Abschnitt 2.4 wird dies an einem Beispiel verdeut-
licht. Manche Entwickler sprechen in diesem Fall scherzhaft von einem sogenannten Heisenbug,
was eine Zusammensetzung aus dem Namen des Physikers Werner Heisenberg und dem Bug ist.

Ein Deadlock, auch Verklemmung genannt, beschreibt einen Zustand, bei dem eine zyklische
Wartesituation zwischen mindestens zwei Ausführungssträngen auftritt. Die Ausführungssträn-
ge blockieren sich dabei selbst, d.h. die Anwendung friert beispielsweise ein. Grundsätzlich
sollte bereits bei der Planung bzw. Implementierung einer Anwendung darauf geachtet werden,
diesen Zustand zu vermeiden, da eine Auflösung nicht trivial und meistens auch gar nicht
möglich ist und das Programm beendet werden muss. In Cloud-Umgebungen sind diese
Situationen von besonderer Relevanz, da ein Deadlock auch zu einem totalen Ausfall führen
kann und zur Folge hat, dass die Anwendung evtl. nicht mehr (von außen) erreichbar ist. Im
Abschnitt 2.5 wird erläutert, wie man mit Deadlocks in Cloud-Umgebungen umgehen kann.

1.2 Leistungsmaße

Um die Reduktion der Laufzeit messbar machen zu können, können verschiedene Leistungsmaße
herangezogen werden. Diese Arbeit beschränkt sich auf die Laufzeit, die Overheadzeit und auf
den Speedup.

Hinweis: Diese Definitionen beziehen sich auf die Anzahl der Prozessoren bzw. Prozessor-
Kerne, können aber im Cloud-Umfeld analog auf die Anzahl der Computer oder die Anzahl
der Threads, die gemeinsam an einer Aufgabe arbeiten, angewendet werden.

1.2.1 Laufzeit und Overheadzeit

Um die Ausführung nebenläufiger Anwendungen bewerten zu können, kann die Laufzeit eines
nebenläufiges Programms, das zum Teil auch parallel verarbeitet wird, wie folgt angegeben
werden [Ben15, S.339]:

Tp(n)
Hierbei steht n für die Problemgröße. Das Problem wird auf p Prozessoren bzw. Prozessor-
Kernen aufgeteilt. Die Laufzeit eines nebenläufigen und damit evtl. auch parallel verarbeitenden
Programms setzt sich aus folgenden Punkten zusammen [Ben15, S.339]:

• Rechenzeit (TCP U ): Die Zeit für die Durchführung der eigentlichen Berechnung(en).
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• Kommunikationszeit (TCOM ): Die Zeit für den Austausch von Daten zwischen den
Prozessoren bzw. Prozessor-Kernen.

• Wartezeit (TW AIT ): Die Zeit, die beispielsweise ein Prozessor bzw. ein Prozessor-Kern
auf einen anderen wegen ungleicher Lastverteilung warten muss.

• Synchronisationszeit (TSY N ): Die Zeit für die Synchronisation aller beteiligten Pro-
zessoren bzw. Prozessor-Kerne.

• Platzierungszeit (TP lace): Die Zeit für die Allokation.

• Startzeit (TStart): Die Zeit, die für das Starten auf allen Prozessoren bzw. Prozessor-
Kernen benötigt wird.

Zur Reduktion der Laufzeit muss die Overheadzeit, zusammengesetzt aus der Kommu-
nikationszeit, der Wartezeit und/oder der Synchronisationszeit, reduziert werden. [Ben15,
S.340]:

TCW S = TCOM + TW AIT + TSY N

Hierbei zu beachten ist, dass die Overheadzeit zunimmt, desto mehr Prozessoren bzw. Prozessor-
Kerne an einem System beteiligt sind. Das liegt zum Beispiel daran, dass die Lastverteilung
komplexer wird, was sich unmittelbar auf die Wartezeit TW AIT auswirkt. Auch die Synchroni-
sationszeit TSY N erhöht sich, da die Prozessoren bzw. Prozessor-Kerne normalerweise häufiger
miteinander synchronisiert werden müssen, spätestens wenn die Berechnungen zusammenlaufen.

1.2.2 Speedup

Abbildung 1: Abstrakte Darstellung von Arten des Speedups [Ben15, S.341]

Die Reduktion der Laufzeit für das Gesamtproblem einer nebenläufigen Anwendung, die
zum Teil auch parallel ausgeführt wird, gibt der Speedup, auch Leistungssteigerung genannt,
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an [Ben15, S.340]:

Sp(n) = T ′(n)
Tp(n)

Hierbei steht n für die Problemgröße. Das Problem wird auf p Prozessoren bzw. Prozessor-Kerne
aufgeteilt. T ′(n) steht für die Laufzeit der schnellsten bekannten sequentiellen Ausführung, d.h.
nicht parallelen Ausführung und Tp(n) für die Laufzeit des nebenläufigen und damit evtl. auch
parallelen Programms. Dabei gilt T1(n) 6= T ′(n), da die nebenläufige und parallele Ausführung
immer mit einer Overheadzeit TCW S verbunden ist.

Der Speedup ist normalerweise nach oben beschränkt, durch die Anzahl der Prozessoren
bzw. Prozessor-Kerne [Ben15, S.340]:

Sp(n) ≤ p

Vereinfacht gesagt bedeutet das, dass die Geschwindigkeitssteigerung von der Anzahl der
Prozessoren bzw. Prozessor-Kerne abhängt und beispielsweise zwei Prozessoren bzw. Prozessor-
Kerne nicht den Geschwindigkeitsvorteil von dreien bieten können.

Die Abbildung 1 stellt exemplarisch verschiedene Speedup-Arten dar: Ist S = p, dann spricht
man von einem linearen Speedup. Dieser Fall stellt einen Idealfall dar und tritt in der
Praxis durch den Overhead TCW S nicht auf. Durch den Overhead TCW S ergibt sich der reale
Speedup. Ist S > p, dann spricht man von superlinearem Speedup [Ben15, S.341]. Diese
Arbeit geht nicht weiter auf den superlinearen Speedup ein, da dieser in der Praxis selten
vertreten ist und nicht zum Verständnis beitragen würde. Mehr zu diesem Thema findet man
aber unter [Ris16].
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Abbildung 2: Abstrakte Darstellung von drei Aktoren in einem Aktorensystem [Imga]

2 Nebenläufige und verteilte Verarbeitung am Beispiel des
Aktorenmodells

Wie bereits in der Einleitung erläutert, möchte diese Arbeit anhand des Aktorenmodells
erläutern, wie man über nebenläufige Programmierung die Laufzeit einer Anwendung reduziert
und wie man Anwendungen über die Verteilung auf mehrere Computer ausfallsicherer gestalten
kann.

Im Abschnitt 1.1.1 und 1.1.2 wurde erläutert, dass es einen Unterschied zwischen nebenläufig
und parallel gibt: Der Softwareentwickler kann eine Anwendung nebenläufig implementieren,
die Parallelisierung erfolgt hierbei durch das Betriebssystem in Anbetracht der eingesetzten
Hardware.

Grundsätzlich lässt sich sagen, dass nicht alle Teile einer nebenläufigen Anwendung par-
allelisiert werden können, da zum Beispiel manche Berechnungen voneinander abhängen.
Als Beispiel wird hierfür die Berechnung der Fibonacci-Folge3 angeführt: Die Werte aus der
Fibonacci-Folge werden aus ihren Vorgängern berechnet, d.h. die vorherigen Werten müssen
erst alle berechnet werden, um die nächsten Werte zu bestimmen.

2.1 Das Aktorenmodell

Das Aktorenmodell ist ein Modell aus der Informatik für die nebenläufige Programmierung.
Das Programm wird dabei in Aktoren unterteilt. Diese Aktoren werden in einem Aktorensys-
tem verwaltet. Aktoren kommunizieren ausschließlich über unveränderbare Nachrichten. Der
Zustand eines Aktors ist von außen nicht direkt sichtbar und kann auch nur über Nachrichten
abgefragt und modifiziert werden [Hew73, S.235]. Das Modell wurde 1973 das erste Mal von
Carl Hewitt, Peter Bishop und Richard Steiger beschrieben [Hew73] und ist bei funktionalen

3 siehe http://www.mathematik.uni-muenchen.de/~forster/v/zth/inzth_01.pdf

9

http://www.mathematik.uni-muenchen.de/~forster/v/zth/inzth_01.pdf


Abbildung 3: Abstrakte Darstellung des FIFO-Prinzips [Imgb]

Programmiersprachen wie zum Beispiel Scala oder Erlang stark verbreitet. Die Abbildung 2
zeigt eine exemplarische Darstellung von drei Aktoren in einem Aktorensystem.

Beschreibung eines Aktors

Ein Aktor ist eine kleine Verarbeitungseinheit in einem System, dessen Zustand von außen
nicht direkt einsehbar oder veränderbar ist. Um mit einem Aktor interagieren zu können,
um zum Beispiel dessen Zustand einzusehen oder zu verändern, wird ausschließlich in Form
von unveränderbaren Nachrichten mit diesem kommuniziert [Hew73, S.235]. Ein Aktor kann
Nachrichten empfangen und selbst versenden. Eingehende Nachrichten werden zunächst in
dem Postfach des jeweiligen Aktors hinterlegt.

Der Aktor arbeitet sequentiell die eingegangenen Nachrichten aus seinem Postfach ab. Das
Postfach verwaltet die Nachrichten in Form einer Warteschlange [Roe16, S.107]. Daher arbeitet
ein Aktor nach dem First In – First Out (FIFO)-Prinzip [Hew73, S.236]. Bei dem FIFO-
Prinzip werden Nachrichten in der Reihenfolge abgearbeitet, in der diese eingegangen sind.
Die Abbildung 3 visualisiert dieses Prinzip.

2.2 Scala

Scala ist eine funktionale und objektorientierte Programmiersprache für die Java Virtual
Machine (JVM)4 [Sca20a]. Seit 2001 wird Scala an der École Polytechnique Fédérale de Lau-
sanne (EPFL) vom einem Team unter der Leitung von Martin Odersky entwickelt [Pie10, S.30].

4 siehe https://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html?
intcmp=3170
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In Scala lässt sich im Vergleich zu Java mit weniger Code deutlich mehr ausdrücken. Zum einen
benötigt Scala deutlich weniger Schlüsselwörter, zum anderen war das Designziel von Scala,
eine knappe, elegante und typsichere Programmierung zu ermöglichen [Pie10, S.30] [Bra10,
S.2]. Als Beispiel wird hierfür das Pattern Matching in Scala herangezogen. Das Pattern
Matching in Scala stellt eine Verallgemeinerung der aus C-ähnlichen Programmiersprachen
bekannten switch-case Anweisung dar [Bra10, S.114], ein Beispiel:

val t = "Ich bin ein String"

t match {

case r: String => println("String: " + r)
case r: Int => println("Int: " + r)

}

Mit der match Anweisung lassen sich hierbei nicht nur Typen prüfen, sondern auch der Wert
einer Variablen.

Im Gegensatz zu vielen modernen Programmiersprachen ist Scala statisch typisiert. Das
bedeutet, der Typ aller Ausdrücke wird zur Kompilierzeit überprüft und nicht erst zur Laufzeit,
wie bei dynamisch typisierten Sprachen. Das Typsystem von Scala ist sehr ausgreift und
lässt neben generischen Klassen und polymorphen Methoden auch Varianz-Annotationen,
Upper und Lower Bounds zu. Ein weiteres relevantes Merkmal von Scala ist die einfache
Erweiterbarkeit. Damit ist Scala für die Erstellung von Domain Specific Language (DSL)s gut
geeignet [Bra10, S.2].

Es ist möglich, Java-Komponenten innerhalb von Scala zu benutzen, da Scala-Bytecode
mit Java-Bytecode kompatibel ist. Als Bytecode wird eine Sammlung von Befehlen für eine
virtuelle Maschine bezeichnet. Programmiersprachen wie Java und Scala werden nicht zu einem
direkten Maschinencode kompiliert, sondern zu einem Zwischencode, dem Bytecode5. Java-
und Scala-Bytecodes sind innerhalb der JVM lauffähig und miteinander kompatibel. Dadurch
können Scala-Komponenten von Java-Komponenten benutzt werden und andersrum [Sca20b].

Hinweis: Diese Kompatibilität ist in der Praxis häufig mit Problemen verbunden. So kann Bei-
spielsweise in Scala ein Object, eine Singleton-Abstraktion6, im Package-Pfad direkt mit dem
Operator $ angesprochen werden, zum Beispiel de.maxbundscherer.example.Main$.
Das ist innerhalb von Java nicht möglich, d.h. das würde bei einem Aufruf innerhalb von Java
zu Problemen führen.

2.2.1 Nebenläufigkeit und Seiteneffekte

Nachdem Scala und Java zueinander kompatibel und beide Programmiersprachen in der JVM
lauffähig sind, können innerhalb von Scala die Java-Techniken, zum Beispiel Java-Threads
und Java-Threadpools, verwendet werden. In dieser Arbeit werden Scala Threads und Java

5 siehe https://www.mi.fu-berlin.de/inf/groups/ag-pr/Lehrveranstaltungen/
swpue-2013/Bytecode_2013-04-18.pdf

6 siehe https://docs.scala-lang.org/tour/singleton-objects.html
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Threads synonym verwendet, da diese sich technisch nicht unterscheiden7.

In Scala bietet sich aber eine sehr elegante Abstraktionsmöglichkeit für die nebenläufige
Programmierung: das Aktorenmodell, vergleiche Abschnitt 2.1 [Bra10, S.193]. Das Aktoren-
modell wurde in Scala als Akka Actors implementiert und wird im folgenden Abschnitt 2.2.2
genauer erläutert.

Da Scala auch eine funktionale Sprache ist, versucht man, bereits über das Sprachdesign
Seiteneffekte zu reduzieren8. Ein Seiteneffekt liegt dann vor, wenn eine Funktion beispiels-
weise den Wert einer globalen Variablen ändert. Dies kann insbesondere bei nebenläufiger
Ausführung zu Race Condtions führen, vergleiche Abschnitt 1.1.3. So sind in Scala beispielsweise
die Collections, wie z.B. List oder Map immutable (unveränderlich).

2.2.2 Akka Actors

Akka ist ein Open-Source Toolkit für die Erstellung von parallelisierten, verteilten, ausfallsiche-
ren und nachrichtengesteuerten Anwendungen in Scala und Java [Akk20]. Akka implementiert
mit Akka Actors das Aktorenmodell, vergleiche Abschnitt 2.1. Akka ist für den Einsatz
innerhalb der JVM konzipiert und implementiert.

Synchronisieren von Aktoren

Nach dem Aktorenmodell besitzen die Aktoren jeweils ihren eigenen Zustand, der von außen
nicht direkt einsehbar oder veränderbar ist. Um mit einem Aktor interagieren zu können, um
zum Beispiel dessen Zustand einzusehen oder zu verändern, wird ausschließlich in Form von
unveränderbaren Nachrichten mit diesem kommuniziert, vergleiche Abschnitt 2.1.

In Scala stellt jeder Thread auch einen Akka Actor dar. Die Umkehrung gilt nicht, da
nicht jeder Akka Actor einen eigenen Thread benötigt [Bra10, S.194]. Das heißt die Aktoren
müssen gegebenenfalls über Nachrichten miteinander synchronisiert werden. Hierfür gibt es
beispielsweise zwei Möglichkeiten:

• Fire and Forget9: Ein Aktor Aa sendet eine Nachricht an einen anderen Aktor Ab und
wartet nicht auf die Antwort von Ab. Der Aktor Aa blockiert nicht, während Aktor Ab

die Nachricht verarbeitet. Dies wird mit dem Aufruf von aktorB ! message innerhalb
des Aktors Aa realisiert.

• Ask10: Ein Aktor Aa sendet eine Nachricht an einen anderen Aktor Ab und wartet auf die
Antwort von Ab. Der Aktor Aa blockiert, während Aktor Ab die Nachricht verarbeitet.
Dies wird mit dem Aufruf von aktorB ? message innerhalb des Aktors Aa realisiert.
Dieser Ausdruck liefert ein Future zurück, das einen Platzhalter für ein noch nicht exis-
tierendes Objekt darstellt. Die Zeit, die der Aktor Aa auf den Aktor Ab wartet, muss zum

7 siehe https://alvinalexander.com/scala/differences-java-thread-vs-scala-future/
8 siehe https://www.informatik-aktuell.de/entwicklung/programmiersprachen/

funktionale-programmierung-mit-scala-herangehensweisen-und-konzepte.html
9 siehe https://doc.akka.io/docs/akka/current/typed/interaction-patterns.html#

fire-and-forget
10 siehe https://doc.akka.io/docs/akka/current/typed/interaction-patterns.html#

request-response-with-ask-between-two-actors
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Beispiel über den Aufruf von implicit val timeout = Timeout(5 seconds)
vorher definiert werden.

Moderne Betriebssysteme unterstützen Threads direkt, so bildet die JVM die Thread-
Verwaltung in der Regel auf das Betriebssystem ab. Ob die Laufzeitumgebung native Threads
nutzt, steht in der Spezifikation der jeweiligen JVM. Die 1-zu-1 Abbildung ermöglicht eine
einfache Verteilung auf mehrere Prozessoren bzw. Prozessor-Kerne [Ull16, 15.1.2].

Ein Beispiel

An der folgenden exemplarischen Implementierung11 wird verdeutlicht, wie man mit einem
Akka Aktor arbeitet. Der TestActor in dieser Implementierung besitzt einen Zustand in
Form eines ganzzahligen Werts (Int).

Zunächst wird der Zustand State(...) des Aktors und
die Nachricht IncreaseBalance(...), die vom Interface (in Scala als Trait bezeichnet)
Request erbt, deklariert:

//Declare request wrapper and internal state
sealed trait Request
private case class State(accountBalance: Int)

//Declare concrete request
case class IncreaseBalance(amount: Int) extends Request

Anschließend wird der Zustand des Aktors bei der Initialisierung definiert
(accountBalance = 0) und das Verhalten auf eingehende Nachrichten vom Typ
IncreaseBalance(...) definiert: Der Aktor wird bei eingehenden Nachrichten von diesem
Typ den Wert seines Zustands um den in der Nachricht definierten Wert inkrementieren und
anschließend per Logger den Wert seines Zustand, vor und nach der Veränderung, ausgeben:

//Default state is idle (define internal state)
def apply(): Behavior[Request] = applyIdle(State(accountBalance = 0))

//Process messages in state idle
private def applyIdle(state: State): Behavior[Request] =

Behaviors.receive { (context, message) =>

message match {

case cmd: IncreaseBalance =>

val newState: State = state.copy(accountBalance =
state.accountBalance + cmd.amount)

context.log.info(s"Old balance was (${state.accountBalance}) / New
balance is (${newState.accountBalance})")

applyIdle(newState)

11 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/examples/MainExample.scala
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}

}

Abschließend wird noch das Aktorensystem mit dem TestActor gestartet und es werden
dem Aktor zwei Nachrichten vom Typ IncreaseBalance(...) zugestellt:

//Init actor system and actor
private val actorSystem: ActorSystem[TestActor.Request] =

ActorSystem(TestActor(), "actorSystem")

//Fire and forget two requests
actorSystem ! TestActor.IncreaseBalance(amount = 10)
actorSystem ! TestActor.IncreaseBalance(amount = -5)

Dies führt zu folgender Konsolenausgabe:

Old balance was (0) / New balance is (10)
Old balance was (10) / New balance is (5)

Hinweis: Da die Ausführungsreihenfolge nichtdeterministisch ist, ist es möglich, dass die
Nachrichten in unterschiedlichen Reihenfolgen zugestellt werden, vergleiche Abschnitt 1.1.3.

Kompatibilität mit Computercluster(n)

Ein Computercluster, auch Rechnerverbund genannt, bezeichnet eine Anzahl von vernetzten
Computern. Die Computer werden hierbei häufig über das TCP/IP-Protokoll miteinander
verbunden. Computercluster sind häufig im Cloud-Umfeld anzutreffen, siehe Erläuterung zur
verteilten Verarbeitung im Abschnitt 1.1.1.

Akka unterstützt sowohl den Betrieb auf einem Computer als auch den Betrieb auf Computer-
clustern:

• Bei Betrieb auf einem Computer: Es ist keine zusätzliche Konfiguration oder Implemen-
tierung notwendig, da dies der Standardkonfiguration entspricht.

• Bei Betrieb auf einem Computercluster: Es ist es zum Beispiel notwendig, die Nachrichten
über das TCP/IP-Protokoll zu transportieren.

Akka bietet mit Akka Remote12 eine Abstraktion für den Entwickler, womit Aktoren
über das TCP/IP-Protokoll miteinander kommunizieren können. Akka Remote sollte aber
innerhalb eines Produktivsystems nicht ohne Akka Cluster13 verwendet werden, da diese
Erweiterung Akka Remote beinhaltet und noch zusätzliche Funktionen wie Service Discovery14

12 siehe https://doc.akka.io/docs/akka/current/remoting.html
13 siehe https://doc.akka.io/docs/akka/current/typed/cluster.html
14 siehe https://doc.akka.io/docs/akka/current/discovery/index.html
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oder automatische Health Checks15 mit sich bringt. Auf Akka Remote und Akka Cluster wird
im Rahmen dieser Arbeit nicht mehr eingegangen, da dies sonst den Rahmen sprengen würde.

Hinweis: Standardmäßig verwendet Akka die Java-Standardserialisierung (Java Object Se-
rialization), um Nachrichten serialisieren bzw. wieder deserialisieren zu können. Diese wird
aber nicht empfohlen, da sie zwischen unterschiedlichen Java-Versionen und Systemen nicht
binärkompatibel ist16.

2.3 Filtern von Primzahlen als Beispielimplementierung

Um den Speedup, vergleiche Abschnitt 1.2.2, greifbar machen zu können, wurde eine Anwendung
in Scala nach dem Aktorenmodell implementiert basierend auf Akka Actors, die Primzahlen
aus einem vorher definierten Bereich filtert.

2.3.1 Aufbau der Anwendung

Die Beispielimplementierung17 filtert Primzahlen aus einem vorher definiertem Bereich, misst
dabei die benötigte Zeit und dokumentiert diese in einer CSV-Datei. Die Anwendung kann die
Filterung auf mehrere Threads verteilen, damit auch über mehrere Prozessoren bzw. Prozessor-
Kerne, beachte Hinweis aus Abschnitt 1.2. Um gegen Messabweichungen zum Beispiel wegen
Garbage Collection (GC)-Zeiten, IO-Zugriffszeiten oder Cache-Stufen vorzugehen, können die
Läufe mehrfach automatisch wiederholt werden. Die Abbildung 4 stellt groben den Ablauf der
Anwendung als Sequenzdiagramm dar.

Die Parameter der Anwendung18 lassen sich wie folgt beschreiben:

• maxWorkersPerRun: Gibt an, auf wie viele Threads die Filterung aufgeteilt werden
soll und wird im Folgenden als Verteilungsstufe bezeichnet. Beispielsweise gibt der Wert
1, 2 hier an, dass die Filterung erst auf einem Thread stattfindet und anschließend auf
zwei Threads verteilt wird.

• repeatRun: Gibt an, wie oft die Läufe pro Verteilungsstufe (maxWorkers aus maxWor-
kersPerRun) wiederholt werden sollen. Der Wert dieses Parameters sollte bei starken
Messabweichungen erhöht werden. Beispielsweise gibt der Wert 5 an, dass die Messung
fünfmal pro Verteilungsstufe wiederholt werden soll.

• to: Gibt an, bis zu welchem Wert die Primzahlen gefiltert werden sollen. Dieser wird, falls
nicht anders angegeben, automatisch aus den Verteilungsstufen (maxWorkersPerRun)
berechnet: Da die Aufteilung der Last gleichmäßig sein soll, stellt dieser Wert das kleinste
gemeinsame Vielfache der Verteilungsstufen dar. Beispielsweise wird der Wert aus den
Verteilungsstufen 1 und 2 berechnet: Das kleinste gemeinsame Vielfache ist hierbei 2.

15 siehe https://doc.akka.io/docs/akka-management/current/healthchecks.html
16 siehe https://doc.akka.io/docs/akka/2.5.31/serialization.html
17 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup
18 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/

main/scala/de/maxbundscherer/akka/scala/prim/Main.scala
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Abbildung 4: Sequenzdiagramm Filtern von Primzahlen als Beispielimplementierung
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Hinweise zur Filterung und Verteilung

Die Zahlen werden in der Beispielanwendung mithilfe dieser sehr trivialen Implementierung19

gefiltert:

def isPrime(n: Int): Boolean = ! ((2 until n-1) exists (n % _ == 0))

Im Rahmen dieser Arbeit ist dies ausreichend, da nicht die effiziente Filterung von Primzahlen
im Vordergrund steht und alle Läufe diese Methodik20 verwenden.

Die Verteilung21 erfolgt ziemlich rudimentär; das bedeutet beispielsweise bei einem Ziel-
bereich von 0 − 100 und zwei Aktoren, dass der Zielbereich auf 0 − 50 und auf 51 − 100
"gleichmäßig" aufgeteilt wird. Diese Strategie führt aber dazu, dass die Bereiche mit niedrige-
ren Werten schneller abgearbeitet werden können als die Bereiche mit höheren Werten. Im
Rahmen dieser Arbeit ist dies ausreichend, dem Leser sollte aber bewusst werden, dass diese
Verteilungsstrategie Auswirkungen auf die Laufzeit hat, da sich nach der Abarbeitung eines
Zielbereichs der Aktor herunterfährt und wieder Ressourcen auf der Maschine frei werden.

2.3.2 Referenzsystem und die gewählten Parameter

Die Messungen wurden auf einem eigenem Server durchgeführt. Das Referenzsystem weist
folgende Eigenschaften auf:

• Anbieter: Amazon Web Services (AWS)

• Betriebssystem: Ubuntu Server 20.04 LTS (HVM) (ami-0b90a8636b6f955c1)

• Festplatte: SSD mit 8 GB

• Prozessor: 4vCPU

• Arbeitsspeicher: 16 GB

Um die Installation auf dem genannten Referenzsystem zu vereinfachen und zu automatisie-
ren, wurde ein Skript erstellt, dieses lässt sich dem Abschnitt A.3.1 entnehmen. Um die Läufe
auf dem genannten Referenzsystem zu vereinfachen und zu automatisieren, wurde ein Skript
erstellt, dieses lässt sich dem Abschnitt A.3.2 entnehmen.

Die Parameter wurden wie folgt gewählt:

• repeatRun: 5

• maxWorkersPerRun: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

• to (errechnet): 720720

17



Abbildung 5: Darstellung der Laufzeit anhand einer festen Problemgröße und variierenden Verteilungs-
stufen (maxWorkers) der Beispielimplementierung. Die einzelnen Messungen werden
zusätzlich über die Durchschnitte (Mean) und die Mittelwerte (Median) pro Verteilungs-
stufe angegeben.

Abbildung 6: Darstellung des Speedups anhand einer festen Problemgröße und variierenden Verteilungs-
stufen (maxWorkers) der Beispielimplementierung. Die einzelnen Messungen werden über
die Durchschnitte (Mean) und die Mittelwerte (Median) pro Verteilungsstufe angegeben.
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2.3.3 Auswertung von Laufzeit und Speedup

Zur Auswertung der Läufe wurde ein Jupyter Notebook22 entwickelt23. Die Grafiken wurden
mithilfe der Python-Bibliothek Matplotlib24 erstellt. Die Ergebnisse der Läufe lassen sich im
Abschnitt A.1 einsehen. Das Log der Messung lässt sich im Abschnitt A.2 einsehen.

Die Daten wurden zunächst eingelesen und ausgewertet: Es wurden insgesamt 80 Messungen
durchgeführt, wobei pro Verteilungsstufe 1− 16 die Messungen 5 mal wiederholt worden sind.
Damit ergibt sich ein berechneter Zielbereich von 0− 720720, vergleiche to aus Abschnitt 2.3.1.
In diesem Bereich wurden 58084 Zahlen als Primzahlen klassifiziert, alle Messungen stimmen
mit diesem Ergebnis überein. Dem Log lässt sich entnehmen, dass der erste Lauf um 08:21:19
Uhr begonnen hat und der letzte Lauf um 11:57:26 Uhr endete, der gesamte Vorgang dauerte
folglich insgesamt ungefähr 3 Stunden und 36 Minuten.

Hinweis: Wie bereits im Abschnitt 1.2 beschrieben, wird hier die Anzahl der Prozesso-
ren bzw. der Prozessor-Kerne analog auf die Anzahl der Threads, die gemeinsam an einer
Aufgabe arbeiten, angewendet.

Auswertung der Laufzeit

Anschließend wurde die Laufzeit Tp(n), vergleiche Abschnitt 1.2.1, ausgewertet. Da die Pro-
blemgröße n, hier durch to definiert, innerhalb der Läufe konstant ist, wurde die Anzahl der
Threads variiert, hier durch maxWorkers (Verteilungsstufe). Da die einzelnen Messungen pro
Verteilungsstufe variieren, werden diese über den Mittelwert und dem Durchschnitt angege-
ben. Die Abbildung 5 stellt die Laufzeit in Relation zu der Anzahl der verwendeten Threads dar.

Den Messungen und der Grafik lässt sich entnehmen, dass die Verteilung über mehrere
Threads, damit auch die Verteilung auf mehrere Prozessoren bzw. Prozessor-Kerne, einen
Einfluss auf die Laufzeit hat. In diesem Fall wurde die Filterung von Primzahlen aus einem
vorher vorgegeben festen Bereich auf mehrere Threads verteilt. Die Geschwindigkeitssteigerung
pro zusätzlichem Thread nimmt mit der Anzahl der Threads deutlich ab. Das ist aber nicht
weiter verwunderlich, da die Overheadzeit auch mit Anzahl der beteiligten Threads zunimmt
und die Laufzeit sich mitunter aus der Overheadzeit zusammensetzt, vergleiche Abschnitt 1.2.1.

Den Messungen und der Grafik lässt sich auch entnehmen, dass ab der Verteilungsstufe
8 die Laufzeit wieder zunimmt, d.h. der Server konnte die Berechnungen nicht mehr effizient
und sinnvoll über die (virtuellen) Prozessoren bzw. Prozessor-Kerne verteilen. Die Gründe
dafür lassen sich nur schwer ermitteln, zum Beispiel mit dem Einsatz von Software-Profilern,

19 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/utils/Calculator.scala

20 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/actors/WorkerActor.scala

21 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/actors/SupervisorActor.scala

22 siehe https://jupyter.org/
23 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/

reports/report.ipynb
24 siehe https://matplotlib.org/
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im Fall von Scala kann Java VisualVM 25 herangezogen werden. Auch das Monitoring von
Betriebssystem und Hardware kann bei der Aufklärung unterstützen. Im Rahmen dieser
Arbeit wurden die genauen Gründe hierfür nicht ermittelt, da diese sich wahrscheinlich nicht
mit einem Mehrwert für den Leser auf andere Betriebssysteme und Hardware übertragen
lassen. Vermutet wird aber, dass der Server sich im Grenzbereich befindet bzw. künstlich
durch den Cloud-Anbieter limitiert wird, wodurch zum Beispiel die Befehle in einer (virtuellen)
Prozessoren-Pipeline häufiger verworfen werden (pipeline flush) und der Server häufiger Daten
aus dem Arbeitsspeicher auf die Festplatte auslagern muss (swapping). Diese Effekte werden
zusätzlich durch den Einsatz von Scala innerhalb der JVM verstärkt, da durch die Abstraktion
die eigentliche Hardware nicht effizient genutzt werden kann. Zu beachten gilt auch, dass die
Verteilung der Zielbereiche durch die Beispielimplementierung erfolgt, vergleiche Abschnitt
2.3.1. Beim Einsatz von anderer Hardware, zum Beispiel von Prozessoren mit mehr Kernen,
tritt dieser Effekt erst bei höheren Verteilungsstufen ein.

Auswertung des Speedups

Abschließend wurde der Speedup Sp(n) = T ′(n)
Tp(n) , vergleiche Abschnitt 1.2.2, ausgewertet. Da

die Problemgröße n, hier durch to definiert, innerhalb der Läufe konstant ist, wurde die
Anzahl der Threads variiert, hier durch maxWorkers (Verteilungsstufe). Zu beachten gilt
hierbei, dass T1(n) = T ′(n) gesetzt worden ist, da hier nur die Läufe miteinander verglichen
werden sollen und die Ergebnisse außerhalb der Läufe keine Aussagekraft besitzen. Da die
einzelnen Messungen pro Verteilungsstufe variieren, werden diese über den Mittelwert und
den Durchschnitt angegeben. Die Abbildung 6 stellt den Speedup in Relation zur Anzahl der
verwendeten Threads dar.

Da der Speedup die Reduktion der Laufzeit angibt, lassen sich die Aussagen von der Auswer-
tung zur Laufzeit auch auf diese Auswertung anwenden. Den Messungen und der Grafik lässt
sich auch entnehmen, dass der Speedup nicht linear zunimmt, vergleiche Aussagen zu linearem
und realem Speedup aus Abschnitt 1.2.2. D.h. die Geschwindigkeitssteigerung nimmt pro
zusätzlicher Verteilungsstufe ab. Das bedeutet für die Applikation, dass die Verwendung von
beispielsweise zwei Prozessoren die Laufzeit nicht um die Hälfte reduziert.

Fazit über beide Auswertungen

Die Auswertungen zeigen, dass die Verteilung der Berechnungen über mehrere Threads und
damit über mehrere Prozessoren bzw. Prozessor-Kerne eine Geschwindigkeitssteigerung, also
eine Reduktion der Laufzeit, bedeutet. Die Geschwindigkeitssteigerung nimmt pro zusätzlicher
Verteilungsstufe ab, da der Overhead immer stärker zunimmt, der sich direkt auf die Laufzeit
auswirkt. Ab einer bestimmten Verteilungsstufe nimmt sogar die Laufzeit wieder zu, was sich
negativ auf den Speedup auswirkt.

Auf andere Applikationen übertragen bedeutet das, dass die Reduktion der Laufzeit über
die Verteilung der Berechnungen auf mehrere Prozessoren bzw. Prozessor-Kerne möglich ist,
unter Berücksichtigung dessen, dass der Overhead, zum Beispiel durch die Synchronisierung
von Prozessor-Kernen zunimmt. Das bedeutet auch, dass das Hinzufügen von weiteren Pro-
zessoren bzw. Prozessor-Kernen sich nicht linear auf die Verbesserung der Laufzeit auswirkt;

25 siehe https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/profiler.
html
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so führt das Hinzufügen eines weiteren Prozessors nicht zu einer Reduktion der Laufzeit um 50%.

Es liegt an den Entwicklern, die Anwendung sinnvoll nebenläufig zu implementieren, um
eine sinnvolle Parallelisierung von Berechnungen zu ermöglichen und nicht die "gewonnene"
Zeit durch die Steigerung des Overheads zu verlieren. Es sollte auch beachtet werden, dass es
Vorgänge gibt, die nicht parallelisiert werden können, vergleiche Hinweis zur Fibonacci-Folge
aus Abschnitt 2.

2.4 Race Condition an einem Beispiel

Abbildung 7: Sequenzdiagramm Race Condition als Beispielimplementierung

Im Abschnitt 1.1.3 wurde erläutert, dass eine Race Condition eine Konstellation bezeichnet,
bei der das Ergebnis einer Operation vom zeitlichen Ablauf bestimmter Einzeloperationen
abhängt und Fehler aus diesen häufig schwer reproduzierbar und damit schwer zu finden sind.

Um diese Aussage etwas greifbarer machen zu können, wurde eine Konstellation implemen-
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tiert26, bei der es zu einer Race Condition kommt. Die Beispielimplementierung startet zunächst
einen Aktor (SupervisorActor) mit einem Zustand in Form eines ganzzahligen Werts (Int).
Anschließend startet dieser Aktor zwei Aktoren (WokerActor), die in einem festen Intervall
den Wert des Zustands vom SupervisorActor abfragen, inkrementieren und anschließend
dem SupervisorActor zurücksenden. Dieser übernimmt den Wert und gibt den neuen und
alten Wert per Logger aus. Abbildung 7 stellt grob den Ablauf der Anwendung als Sequenz-
diagramm dar.

Das führt zunächst zur erwartenden Konsolenausgabe:

[11,188] [SupervisorActor$] - Start run with initial State(0)
[11,192] [WorkerActor$] - Start periodic timer
[11,192] [WorkerActor$] - Start periodic timer
[11,719] [SupervisorActor$] - OldState State(0) / NewState State(0)
[11,719] [SupervisorActor$] - OldState State(1) / NewState State(1)
[12,204] [SupervisorActor$] - OldState State(1) / NewState State(1)
[12,204] [SupervisorActor$] - OldState State(2) / NewState State(2)
[12,704] [SupervisorActor$] - OldState State(2) / NewState State(2)
[12,705] [SupervisorActor$] - OldState State(3) / NewState State(3)
[13,204] [SupervisorActor$] - OldState State(3) / NewState State(3)

Die ersten in eckigen Klammern angegeben Werte, z.B.: [13,204] stehen dafür, dass die Zeile
in der Sekunde 13 und Millisekunde 204 geloggt worden ist. Wie man an der Ausgabe sehen
kann, sind die geloggten Ergebnisse zunächst wie erwartet: Die Aktoren WokerActor erhalten
jeweils den gleichen Wert vom SupervisorActor, inkrementieren diesen, anschließend wird
dieser wieder vom SupervisorActor übernommen. Der Wert wird also immer doppelt
inkrementiert, bis auf die erste Inkrementierung, da die Aktoren hier noch stärker zeitlich
versetzt arbeiten (Platzierungszeit ist unterschiedlich). Doch nach kurzer Zeit:

[06,206] [SupervisorActor$] - OldState State(110) / NewState State(110)
[06,705] [SupervisorActor$] - OldState State(110) / NewState State(110)
[06,705] [SupervisorActor$] - OldState State(111) / NewState State(111)
[07,206] [SupervisorActor$] - OldState State(111) / NewState State(111)
[07,206] [SupervisorActor$] - OldState State(112) / NewState State(112)
[07,705] [SupervisorActor$] - OldState State(113) / NewState State(113)
[07,706] [SupervisorActor$] - OldState State(114) / NewState State(114)
[08,206] [SupervisorActor$] - OldState State(114) / NewState State(114)
[08,206] [SupervisorActor$] - OldState State(115) / NewState State(115)
[08,706] [SupervisorActor$] - OldState State(115) / NewState State(115)

In den Berechnungen hat sich nach kurzer Zeit bereits ein Fehler eingeschlichen: Hier wurde der
Wert 112 nicht wie erwartend doppelt inkrementiert. Das kann zum Beispiel passieren, wenn der
Thread von einem WorkerActor vom Scheduler kurzzeitig pausiert wird, vergleiche Abschnitt
1.1.2. Das führt dazu, dass der "pausierte" WorkerActor den nicht-inkrementierten Wert
nicht "mitbekommt" und daher den bereits inkrementierten Wert noch einmal inkrementiert.

26 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/examples/RCExample.scala
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2.5 Ausblick Steigerung der Ausfallsicherheit

Diese Arbeit möchte noch einen Ausblick darüber geben, wie man Anwendungen über die
Verteilung auf mehrere Computer ausfallsicherer gestalteten kann. Der Begriff Ausfallsicher-
heit ist nicht eindeutig definiert, der Autor der Arbeit versteht darunter, eine Applikation
durch die Verteilung auf mehrere Computer, zum Beispiel Server, also durch den Einsatz von
Redundanzen, gegen die Nicht-Erreichbarkeit zu schützen.

Verwiesen wird zunächst auf das CAP Theorem, auch Brewers Theorem genannt: Nach
diesem Theorem sind nur zwei von drei möglichen Eigenschaften in einem verteilen System
möglich [Gil02]:

• Konsistenz (Consistency): Die gesamten gespeicherten Daten sind konsistent.

• Verfügbarkeit (Availability): Anfragen an das System werden beantwortet.

• Partitionstoleranz (Partition tolerance): Das System arbeitet auch weiter, wenn zum
Beispiel einzelne Server innerhalb eines Clusters nicht mehr erreichbar sind.

Da bei einer Verteilung über mehrere Server gewährleistet werden muss, dass das System
auch weiterarbeiten kann, wenn einzelne Server nicht mehr erreichbar sind, muss auf jeden Fall
die Eigenschaft Partition tolerance erfüllt sein. Dem Entwickler steht nun frei, das System
mit einer weiteren Eigenschaft zu implementieren:

• C+P: Die Daten sind global gesehen immer konsistent, das System ist evtl. nicht zu
jedem Zeitpunkt erreichbar. Als Datenbank könnte hierfür beispielsweise Redis27 oder
MongoDB28 verwendet werden.

• A+P: Die Daten sind global gesehen nicht immer konsistent, das System ist aber immer
erreichbar. Als Datenbank könnte hierfür Apache Cassandra29 verwendet werden. In
diesem Kontext fällt häufig der Begriff Eventual Consistency30, auf diesen kann aber
im Rahmen der Arbeit nicht mehr eingegangen werden, da dies sonst den Rahmen der
Arbeit sprengen würde.

Es sollte hierbei erwähnt werden, dass es sich bei dem CAP-Theorem um theoretische Eigen-
schaften handelt, so kann beispielsweise die Availability nicht gewährleistet werden, wenn die
Internet-Anbindung des Rechenzentrums ausfällt.

Die Verteilung von Akka Aktoren über mehrere Server kann zum Beispiel über den Ein-
satz von Akka Cluster, vergleiche Abschnitt 2.2.2, gewährleistet werden. Akka Cluster gibt
nicht vor, ob es sich um ein System mit den Eigenschaften C+P oder A+P handelt. Diese
Eigenschaften zeichnen sich zum Beispiel durch Verwendung einer geeigneten Datenbank und
der Implementierung selbst ab.

Des weiteren sollte darauf geachtet werden, dass Daten nicht verloren gehen, wenn ein Compu-
ter aus dem Cluster nicht mehr reagiert und neugestartet wird: Um den Zustand eines Akka

27 siehe https://redis.io/
28 siehe https://www.mongodb.com/
29 siehe https://cassandra.apache.org/
30 siehe https://dl.acm.org/doi/10.1145/1435417.1435432
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Aktors nach dem Beenden wiederherstellen zu können, kann Akka Persistence31 verwendet
werden. Akka Persistence ist eine Erweiterung für Akka, die es ermöglicht, den Zustand eines
Akka Aktors mithilfe der Speicherung und Verwaltung von Events (die durch die eingehenden
Nachrichten definiert werden) und optionalen Momentaufnahmen (Snapshots) auch nach dem
Beenden der Aktoren wiederherzustellen.

Damit ist Akka Persistence eine Implementierung des Event Sourcing (ES)-Ansatzes. Beim
ES werden alle Veränderungen des Zustands eines Systems in Form von Events abgebildet
[Pac18, S.115]. Durch diese Architekturentscheidung ist es möglich, das komplette System zu
jedem Zeitpunkt wiederherzustellen. Das unterstützt nicht nur bei der Fehlersuche, sondern
ermöglicht es auch, besser zu verstehen, wie mit dem System gearbeitet wird.

Im Abschnitt 1.1.3 wurde erwähnt, dass zum Beispiels Deadlocks für Cloud-Umgebungen
von besonderer Relevanz sind, da diese zu einem Totalausfall führen könnten. Ein Deadlock
könnte beispielsweise entstehen, wenn ein Akka Aktor auf einen anderen wartet, der aber nicht
antwortet und evtl. selbst auf einen Aktor wartet. Um dies zu vermeiden, kann beispielsweise
ein Akka Aktor auf einen anderen Aktor nur eine maximale Zeit warten, weshalb bei ask, ver-
gleiche Abschnitt 2.2.2, diese Zeit definiert werden musste. Falls in der vorgegebenen Zeit keine
Antwort eingetroffen ist, lässt Akka den Aktor abstürzen und neustarten. Dieses Verhalten
wird in der Supervisor Strategie32 von Akka definiert.

31 siehe https://doc.akka.io/docs/akka/current/persistence.html
32 siehe https://doc.akka.io/docs/akka/current/fault-tolerance.html
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A Anänge

A.1 Ergebnisse der Messungen

Die Ergebnisse der Messungen lassen sich unter https://github.com/maxbundscherer/
scala-akka-prime-speedup/blob/master/results.csv einsehen:

to,resultsSize,startTime,maxWorkers,time
720720,58084,1076321827730,1,290840815916
720720,58084,1367225151264,1,291387615803
720720,58084,1658643477235,1,278438275264
720720,58084,1937127234899,1,278406359526
720720,58084,2215566355452,1,278412696104
720720,58084,2494027662397,2,204721940674
720720,58084,2698783298022,2,204715441299
720720,58084,2903529989798,2,204732259299
720720,58084,3108289888033,2,204738063774
720720,58084,3313072275031,2,204776110272
720720,58084,3517888044136,3,150731133757
720720,58084,3668658094731,3,150720842650
[...]

Hinweis: Die Ergebnisse wurden mit [...] gekürzt.

A.2 Log der Messläufe

Das Log zu den Messungen lässt sich unter https://github.com/maxbundscherer/
scala-akka-prime-speedup/blob/master/log.txt einsehen:

[info] welcome to sbt 1.3.12 (Private Build Java 13.0.3)
[info] loading project definition from

/home/ubuntu/scala-akka-prime/project
[info] loading settings for project scala-akka-prime from build.sbt ...
[info] set current project to scala-akka-prime (in build

file:/home/ubuntu/scala-akka-prime/)
[info] Compiling 1 Scala source to

/home/ubuntu/scala-akka-prime/target/scala-2.13/classes ...
[info] Done compiling.
[info] running de.maxbundscherer.akka.scala.prim.Main
[2020-07-17 08:21:19,681] [INFO] [akka.event.slf4j.Slf4jLogger] -

Slf4jLogger started {}
[2020-07-17 08:21:19,706] [INFO]

[de.maxbundscherer.akka.scala.prim.actors.SupervisorActor$] - Start
run (StartRunCmd(720720,1,results.csv))
{akkaAddress=akka://actorSystem, akkaSource=akka://actorSystem/user,
sourceActorSystem=actorSystem}

[2020-07-17 08:26:10,552] [INFO]
[de.maxbundscherer.akka.scala.prim.actors.SupervisorActor$] -
Finished run (StartRunCmd(720720,1,results.csv))
{akkaAddress=akka://actorSystem, akkaSource=akka://actorSystem/user,
sourceActorSystem=actorSystem}

[...]

Hinweis: Das Log wurde mit [...] gekürzt.
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A.3 Skripte für AWS EC2 Instanzen mit Ubuntu Server 20.x

Für die Messungen wurde ein Skript für die Installation und ein Skript für den eigentlichen
Lauf geschrieben.

A.3.1 EC2 Installation

Der Skript lässt sich unter
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/
ec2-install.sh einsehen:

echo "JAVA INSTALL"

sudo apt-get update
sudo apt install openjdk-13-jre-headless

echo "SBT INSTALL"
echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee -a

/etc/apt/sources.list.d/sbt.list
curl -sL "https://keyserver.ubuntu.com/pks/lookup?op=get&search=[...]" |

sudo apt-key add
sudo apt-get update
sudo apt-get install sbt

echo "GIT CLONE"
git clone https://github.com/maxbundscherer/scala-akka-prime

Hinweis: Das Skript wurde mit [...] gekürzt.

A.3.2 EC2 Lauf

Der Skript lässt sich unter
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/
ec2-run.sh einsehen:

echo "SET SBT OPTS"
export SBT_OPTS="-Xss2M -Xms4G -Xmx15G"

echo "RUN SBT"
sbt run >> log.txt

echo "SHUTDOWN SERVER"
sudo shutdown now

Hinweis: Das Skript wurde mit [...] gekürzt.
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