Technische m[

Hochschule
Rosenheim WT

Die nebenlaufige und verteilte Verarbeitung am
Beispiel des Aktorenmodells

Maximilian Bundscherer
Fakultat fur Informatik

SoSe 2020

Die Taktraten von Prozessoren ist in den letzten Jahren nicht mehr signifikant
gestiegen. Durch die Annédherung an physikalische Grenzen wachsen die Kosten
bei der Entwicklung und Herstellung, bis zur Einstellung derselben. Da viele
Anwendungen, zum Beispiel Wetter- oder Windkanalsimulationen in der Forschung,
hohe Rechenleistungen benotigen, um in einer absehbaren Zeit zu einem Ergebnis
zu gelangen, liegt es nahe, einen Teil der Berechnungen zu parallelisieren, d.h. ein
Teil der Berechnungen lauft gleichzeitig iiber zum Beispiel mehrere Prozessor-Kerne
oder Computer ab.

Viele Anwendungen laufen heutzutage in der "Cloud', d.h. die Anwendungen
laufen in einem Rechenzentrum tiber mehrere Computer verteilt und meistens sehr
stark von der eigentlichen Hardware abstrahiert. Das bedeutet fir die Applika-
tionen, dass diese nicht alle Vorteile der Hardware bzw. der zugrundeliegenden
Architektur nutzen (kénnen), im Gegensatz zu Anwendungen, die zum Beispiel in
C++ oder Go systemnah bzw. hardwarenah implementiert worden sind.

Da die Parallelisierung von Berechnungen kein triviales Unterfangen darstellt
und das vor allem die Softwareentwicklung betrifft, méchte diese Arbeit anhand
des Aktorenmodells erldutern, wie man iiber nebenldufige Programmierung die
Laufzeit einer Anwendung reduziert und wie man Anwendungen iiber die Verteilung
auf mehrere Computer ausfallsicherer gestalten kann. Diese Arbeit geht aus den
oben genannten Griinden nicht auf die Hardware(-Parallelisierung) ein und richtet
sich daher eher an Softwareentwickler im Cloud-Umfeld als an Entwickler, die
hardwarenah entwickeln.

Inhaltsverzeichnis

1

Einleitung mit Motivation

1.1 Einfiihrende Begriffe o oo
1.1.1 Nebenlaufig, Parallel und Verteilt
1.1.2 Programme, Threads, Prozesse und Scheduler
1.1.3 Race Conditions und Deadlocks

1.2 Leistungsmafle
1.2.1 Laufzeit und Overheadzeit
1.2.2 Speedup

Nebenlaufige und verteilte Verarbeitung am Beispiel des Aktorenmodells

2.1 Das Aktorenmodell

2.2 Scala
2.2.1 Nebenldufigkeit und Seiteneffekte o000
2.2.2 Akka Actors

2.3 Filtern von Primzahlen als Beispielimplementierung
2.3.1 Aufbau der Anwendung
2.3.2 Referenzsystem und die gewdhlten Parameter
2.3.3 Auswertung von Laufzeit und Speedup

2.4 Race Condition an einem Beispiel 00

2.5 Ausblick Steigerung der Ausfallsicherheit

Anénge

A.1 Ergebnisse der Messungen e

A2 Logder Messldufe

A.3 Skripte fiir AWS EC2 Instanzen mit Ubuntu Server 20.x
A.3.1 EC2Installation
A32 EC2Lauf e

10
11
12
15
15
17
19
21
23

Abkurzungsverzeichnis
FIFO First In — First Out

JVM Java Virtual Machine

GC Garbage Collection

DSL Domain Specific Language

ES Event Sourcing

1 Einleitung mit Motivation

Die Taktraten von Prozessoren ist in den letzten Jahren nicht mehr signifikant gestiegen.
Durch die Anndherung an physikalische Grenzen wachsen die Kosten bei der Entwicklung und
Herstellung, bis zur Einstellung derselben [Benl15, VII].

Da viele Anwendungen, zum Beispiel Wetter- oder Windkanalsimulationen in der Forschung,
hohe Rechenleistungen benotigen, um in einer absehbaren Zeit zu einem Ergebnis zu gelangen
[Raul2, S.1] [Vogl2, S.13], liegt es nahe, einen Teil der Berechnungen zu parallelisieren, d.h.
ein Teil der Berechnungen l4uft gleichzeitig {iber zum Beispiel mehrere Prozessor-Kerne oder
Computer ab.

Folglich lasst sich der Trend erkléren, dass viele Prozessor-Hersteller die heutigen Prozessoren
mit mehreren Kernen ausstatten, um zusammen mit anderen Mafinahmen, wie zum Beispiel
eine Verbesserung der Pipeline-Anordnung(en) oder eine Vergrofilerung der internen Prozessor-
Caches (L1, L2, L3), den nicht mehr signifikanten Anstieg der Taktraten zu kompensieren.

Viele Anwendungen laufen heutzutage in der "Cloud", d.h. die Anwendungen laufen in einem
Rechenzentrum iiber mehrere Computer verteilt. Die Sicht auf die eingesetzte Hardware, wie
Prozessoren, wird deutlich abstrakter, da viele Anbieter von Rechenzentren nur gegen Aufpreis
den Einsatz von bestimmter Hardware garantieren und daher zum Beispiel nicht an den Kunden
weitergeben, welche Prozessoren eingesetzt werden. Manche moderne Programmiersprachen
wie Java oder Scala laufen auflerdem selbst oft innerhalb einer virtuellen Maschine, im Beispiel
Java in der Java Virtual Machine. In der Cloud ist es auch nicht uniiblich, dass die Anwendun-
gen in einem Container laufen, zum Beispiel Docker. Das bedeutet fiir die Applikationen, dass
diese sehr viel abstrakter auf der Hardware laufen und daher nicht alle Vorteile der Hardware
bzw. der zugrundeliegenden Architektur nutzen (kénnen), im Gegensatz zu Anwendungen, die
zum Beispiel in C++ oder Go systemnah bzw. hardwarenah implementiert worden sind.

Da die Parallelisierung von Berechnungen kein triviales Unterfangen darstellt und das vor
allem die Softwareentwicklung betrifft [Uel19, S.1], mochte diese Arbeit anhand des Aktoren-
modells erldutern, wie man iiber nebenldufige Programmierung die Laufzeit einer Anwendung
reduziert und wie man Anwendungen tiber die Verteilung auf mehrere Computer ausfallsicherer
gestalten kann. Diese Arbeit geht aus den oben genannten Griinden nicht auf die Hardware(-
Parallelisierung) ein und richtet sich daher eher an Softwareentwickler im Cloud-Umfeld als an
Entwickler, die hardwarenah entwickeln.

1.1 Einfuhrende Begriffe

Die Begriffe aus diesem Umfeld miissen zunéchst abgegrenzt und definiert werden, da es auf die
folgenden Begriffe unterschiedliche Sichten gibt, die sich auch im Laufe der Zeit verdndert haben
und je nach Kontext unterschieden werden: So stellt sich beispielsweise ein Softwareentwickler
im Cloud-Umfeld unter dem Begriff Verteilung die Verteilung einer Anwendung iiber mehrere
Server oder virtuelle Maschinen vor; der Entwickler, der hardwarenah entwickelt, versteht
darunter die Verteilung der Berechnungen iiber mehrere Prozessor-Kerne.

1.1.1 Nebenlaufig, Parallel und Verteilt

Wenn viele Dinge gleichzeitig passieren, nennt man ein System nebenlaufig. Dabei gibt
es Vorginge, die echt parallel ausgefiihrt werden kénnen. Manche Vorgéange sehen aber
nur parallel aus, werden aber in Wirklichkeit nur schnell hintereinander ausgefiihrt; dieses
Verhalten bezeichnet man als quasi-parallel. Auf Software iibertragen bedeutet das, dass
die gleichzeitige Abarbeitung von Programmen und die Nutzung von Ressourcen nebenléufig
ist, aber das Betriebssystem unter Berticksichtigung der verbauten Hardware, zum Beispiel
Anzahl der Prozessoren bzw. Prozessor-Kerne, vorgibt, ob Teile dieser Abarbeitung auch echt
parallel stattfinden [Ull16, 15.1].

Die verteilte Verarbeitung, auch Distributed Computing genannt, beschéaftigt sich mit
der Koordination von Computern, zum Beispiel innerhalb eines Netzwerks, die eine gemein-
same Aufgabe erledigen. Die eingesetzten Techniken bzw. Werkzeuge, wie Hardware oder
Betriebssysteme der einzelnen Computer kénnen dabei sehr stark variieren [Benlb, S.25], wie
es bei angemieteten (ohne Aufpreis fiur spezielle Hardware) Cloud-Umgebungen haufig der Fall
ist.

1.1.2 Programme, Threads, Prozesse und Scheduler

Viele moderne Betriebssysteme suggerieren dem Benutzer, dass verschiedene Anwendungen
gleichzeitig ausgefiihrt werden:

e Bei Computern mit nur einem Prozessor bzw. Prozessor-Kern: Das Betriebssystem
wechselt mit der Abarbeitung der Teile zum Beispiel alle paar Millisekunden. Die
Ausfihrung ist hierbei nebenldufig, aber nicht echt parallel.

e Bei einem Computer mit mehreren Prozessoren bzw. Prozessor-Kernen: Die Programm-
teile konnen echt parallel ausgefiithrt werden.

Der Teil des Betriebssystem, der diese Umschaltung vornimmt, wird als Scheduler, auch
Steuerprogramm genannt, bezeichnet [Ull16, 15.1.1]. Auch in Cloud-Umgebungen sind héufig
ein oder mehrere Scheduler anzutreffen, da meistens verschiedene Berechnungen auf ein und
derselben Maschine oder in einem Rechenzentrum stattfinden. Es gibt verschiedene Arten von
Scheduler, die nicht nur auf einem Computer "umschalten", zum Beispiel der Linux-Scheduler
Completely Fair Scheduler', sondern auch in Cloud-Umgebungen Berechnungen einplanen,
zum Beispiel das sogenannte Job Scheduling? von der Firma Amazon Web Services (AWS).
In dieser Arbeit wird nicht weiter auf dieses Thema eingegangen, da dies sonst den Rahmen
sprengen und nicht weiter zum Verstandnis beitragen wiirde.

Ein Programm besteht aus einem oder mehreren Prozessen. Ein Prozess setzt sich aus
dem Programmcode und den Daten zusammen und besitzt einen eigenen Adressraum. Die
Adressrdume der einzelnen Prozesse werden durch die virtuelle Speicherverwaltung des Be-
triebssystems getrennt, wodurch es nicht moglich ist, dass ein Prozess in den Speicherraum
eines anderen Prozesses eingreift, da das Betriebssystem das Programm in diesem Fall beenden
wiirde [Ull16, 15.1.1].

1 siehe https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
2 siehe https://docs.aws.amazon.com/batch/latest/userguide/job_scheduling.html

https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://docs.aws.amazon.com/batch/latest/userguide/job_scheduling.html

Bei modernen Betriebssystemen gehort zu jedem Prozess mindestens ein Thread, auch
Ausfithrungsstrang genannt. Nach dieser Definition werden nicht mehr die Prozesse nebenlaufig
ausgefiihrt, sondern die Threads. Die Threads innerhalb eines Prozesses teilen sich den gleichen
Adressraum und koénnen untereinander auf ihre 6ffentlichen Daten zugreifen [Ull16, 15.1.2].

1.1.3 Race Conditions und Deadlocks

Eine Race Condition, auch kritische Wettlaufsituation genannt, bezeichnet eine Konstellati-
on, bei der das Ergebnis einer Operation vom zeitlichen Ablauf bestimmter Einzeloperationen
abhéngt [Benl5, S.129] [Raul2, S.149]. Bei der nebenldufigen Programmierung sind diese
Situationen von besonderer Relevanz, da schwer auffindbare, nichtdeterministische Fehler
entstehen konnen. Erschwerend kommt meistens hinzu, dass durch (lokales) Debugging, zum
Beispiel mithilfe eines Loggers und bei nur einem Prozessor, die Fehler nicht reproduzierbar
und daher schwer aufzufinden sind. Im Abschnitt 2.4 wird dies an einem Beispiel verdeut-
licht. Manche Entwickler sprechen in diesem Fall scherzhaft von einem sogenannten Heisenbug,
was eine Zusammensetzung aus dem Namen des Physikers Werner Heisenberg und dem Bug ist.

Ein Deadlock, auch Verklemmung genannt, beschreibt einen Zustand, bei dem eine zyklische
Wartesituation zwischen mindestens zwei Ausfithrungsstrangen auftritt. Die Ausfiihrungsstran-
ge blockieren sich dabei selbst, d.h. die Anwendung friert beispielsweise ein. Grundséatzlich
sollte bereits bei der Planung bzw. Implementierung einer Anwendung darauf geachtet werden,
diesen Zustand zu vermeiden, da eine Auflésung nicht trivial und meistens auch gar nicht
moglich ist und das Programm beendet werden muss. In Cloud-Umgebungen sind diese
Situationen von besonderer Relevanz, da ein Deadlock auch zu einem totalen Ausfall fithren
kann und zur Folge hat, dass die Anwendung evtl. nicht mehr (von auflen) erreichbar ist. Im
Abschnitt 2.5 wird erldutert, wie man mit Deadlocks in Cloud-Umgebungen umgehen kann.

1.2 LeistungsmaBe

Um die Reduktion der Laufzeit messbar machen zu kénnen, konnen verschiedene Leistungsmafe
herangezogen werden. Diese Arbeit beschrinkt sich auf die Laufzeit, die Overheadzeit und auf
den Speedup.

Hinweis: Diese Definitionen beziehen sich auf die Anzahl der Prozessoren bzw. Prozessor-
Kerne, kénnen aber im Cloud-Umfeld analog auf die Anzahl der Computer oder die Anzahl
der Threads, die gemeinsam an einer Aufgabe arbeiten, angewendet werden.

1.2.1 Laufzeit und Overheadzeit

Um die Ausfithrung nebenldufiger Anwendungen bewerten zu kénnen, kann die Laufzeit eines
nebenlaufiges Programms, das zum Teil auch parallel verarbeitet wird, wie folgt angegeben
werden [Benlb, S.339]:

Tp(n)

Hierbei steht n fiir die Problemgrofie. Das Problem wird auf p Prozessoren bzw. Prozessor-
Kernen aufgeteilt. Die Laufzeit eines nebenldufigen und damit evtl. auch parallel verarbeitenden
Programms setzt sich aus folgenden Punkten zusammen [Benl5, S.339:

o Rechenzeit (Topy): Die Zeit fiir die Durchfiihrung der eigentlichen Berechnung(en).

o Kommunikationszeit (Tcons): Die Zeit fiir den Austausch von Daten zwischen den
Prozessoren bzw. Prozessor-Kernen.

o Wartezeit (Tyasr): Die Zeit, die beispielsweise ein Prozessor bzw. ein Prozessor-Kern
auf einen anderen wegen ungleicher Lastverteilung warten muss.

o Synchronisationszeit (Tsyy): Die Zeit fiir die Synchronisation aller beteiligten Pro-
zessoren bzw. Prozessor-Kerne.

o Platzierungszeit (Tpjqc.): Die Zeit fiir die Allokation.

o Startzeit (Tsyqr): Die Zeit, die fiir das Starten auf allen Prozessoren bzw. Prozessor-
Kernen benétigt wird.

Zur Reduktion der Laufzeit muss die Overheadzeit, zusammengesetzt aus der Kommu-
nikationszeit, der Wartezeit und/oder der Synchronisationszeit, reduziert werden. [Benl5,
S.340]:

Tews = Tcom +Twarr + Tsyn

Hierbei zu beachten ist, dass die Overheadzeit zunimmt, desto mehr Prozessoren bzw. Prozessor-
Kerne an einem System beteiligt sind. Das liegt zum Beispiel daran, dass die Lastverteilung
komplexer wird, was sich unmittelbar auf die Wartezeit Ty ar7 auswirkt. Auch die Synchroni-
sationszeit Ty erhoht sich, da die Prozessoren bzw. Prozessor-Kerne normalerweise héufiger
miteinander synchronisiert werden miissen, spétestens wenn die Berechnungen zusammenlaufen.

1.2.2 Speedup

Speedup 16 2
14) ,
Superlinearer Linearer
Speedup Speedup
12 +—
10+ durchTeows
8 —
6T Realer
Speedup
4
2 —
| | | | | | | | .
| [| | [[[| e
2 4 6 8 10 12 14 16
Anzahl der Prozessoren

Abbildung 1: Abstrakte Darstellung von Arten des Speedups [Benl5, S.341]

Die Reduktion der Laufzeit fiir das Gesamtproblem einer nebenldufigen Anwendung, die
zum Teil auch parallel ausgefithrt wird, gibt der Speedup, auch Leistungssteigerung genannt,

an [Benlb5, S.340]:
T'(n)
S =
p(n) Tp(n)

Hierbei steht n fir die Problemgréfie. Das Problem wird auf p Prozessoren bzw. Prozessor-Kerne
aufgeteilt. 7"(n) steht fir die Laufzeit der schnellsten bekannten sequentiellen Ausfithrung, d.h.
nicht parallelen Ausfithrung und 7, (n) fiir die Laufzeit des nebenldufigen und damit evtl. auch
parallelen Programms. Dabei gilt T} (n) # T'(n), da die nebenldufige und parallele Ausfithrung
immer mit einer Overheadzeit Tows verbunden ist.

Der Speedup ist normalerweise nach oben beschrinkt, durch die Anzahl der Prozessoren
bzw. Prozessor-Kerne [Benl5, S.340]:

Sp(n) <p

Vereinfacht gesagt bedeutet das, dass die Geschwindigkeitssteigerung von der Anzahl der
Prozessoren bzw. Prozessor-Kerne abhangt und beispielsweise zwei Prozessoren bzw. Prozessor-
Kerne nicht den Geschwindigkeitsvorteil von dreien bieten kénnen.

Die Abbildung 1 stellt exemplarisch verschiedene Speedup-Arten dar: Ist S = p, dann spricht
man von einem linearen Speedup. Dieser Fall stellt einen Idealfall dar und tritt in der
Praxis durch den Overhead Tew g nicht auf. Durch den Overhead Ty g ergibt sich der reale
Speedup. Ist S > p, dann spricht man von superlinearem Speedup [Benl5, S.341]. Diese
Arbeit geht nicht weiter auf den superlinearen Speedup ein, da dieser in der Praxis selten
vertreten ist und nicht zum Verstdndnis beitragen wiirde. Mehr zu diesem Thema findet man
aber unter [Ris16].

Mailbox

Abbildung 2: Abstrakte Darstellung von drei Aktoren in einem Aktorensystem [Imga]

2 Nebenlaufige und verteilte Verarbeitung am Beispiel des
Aktorenmodells

Wie bereits in der Einleitung erlautert, mochte diese Arbeit anhand des Aktorenmodells
erldutern, wie man tiber nebenldufige Programmierung die Laufzeit einer Anwendung reduziert
und wie man Anwendungen tiber die Verteilung auf mehrere Computer ausfallsicherer gestalten
kann.

Im Abschnitt 1.1.1 und 1.1.2 wurde erldutert, dass es einen Unterschied zwischen nebenlaufig
und parallel gibt: Der Softwareentwickler kann eine Anwendung nebenlédufig implementieren,
die Parallelisierung erfolgt hierbei durch das Betriebssystem in Anbetracht der eingesetzten
Hardware.

Grundsétzlich ldsst sich sagen, dass nicht alle Teile einer nebenldufigen Anwendung par-
allelisiert werden kénnen, da zum Beispiel manche Berechnungen voneinander abhéngen.
Als Beispiel wird hierfiir die Berechnung der Fibonacci-Folge?® angefiihrt: Die Werte aus der
Fibonacci-Folge werden aus ihren Vorgéngern berechnet, d.h. die vorherigen Werten miissen
erst alle berechnet werden, um die ndchsten Werte zu bestimmen.

2.1 Das Aktorenmodell

Das Aktorenmodell ist ein Modell aus der Informatik fiir die nebenldufige Programmierung.
Das Programm wird dabei in Aktoren unterteilt. Diese Aktoren werden in einem Aktorensys-
tem verwaltet. Aktoren kommunizieren ausschliefllich iiber unverdnderbare Nachrichten. Der
Zustand eines Aktors ist von auflen nicht direkt sichtbar und kann auch nur iiber Nachrichten
abgefragt und modifiziert werden [Hew73, S.235]. Das Modell wurde 1973 das erste Mal von
Carl Hewitt, Peter Bishop und Richard Steiger beschrieben [Hew73] und ist bei funktionalen

3 siehe http://www.mathematik.uni-muenchen.de/~forster/v/zth/inzth_01.pdf

http://www.mathematik.uni-muenchen.de/~forster/v/zth/inzth_01.pdf

Abbildung 3: Abstrakte Darstellung des FIFO-Prinzips [Imgb]

Programmiersprachen wie zum Beispiel Scala oder Erlang stark verbreitet. Die Abbildung 2
zeigt eine exemplarische Darstellung von drei Aktoren in einem Aktorensystem.

Beschreibung eines Aktors

Ein Aktor ist eine kleine Verarbeitungseinheit in einem System, dessen Zustand von auflen
nicht direkt einsehbar oder verdnderbar ist. Um mit einem Aktor interagieren zu koénnen,
um zum Beispiel dessen Zustand einzusehen oder zu verdndern, wird ausschliefSlich in Form
von unverdnderbaren Nachrichten mit diesem kommuniziert [Hew73, S.235]. Ein Aktor kann
Nachrichten empfangen und selbst versenden. Eingehende Nachrichten werden zunéchst in
dem Postfach des jeweiligen Aktors hinterlegt.

Der Aktor arbeitet sequentiell die eingegangenen Nachrichten aus seinem Postfach ab. Das
Postfach verwaltet die Nachrichten in Form einer Warteschlange [Roel6, S.107]. Daher arbeitet
ein Aktor nach dem First In — First Out (FIFO)-Prinzip [Hew73, S.236]. Bei dem FIFO-
Prinzip werden Nachrichten in der Reihenfolge abgearbeitet, in der diese eingegangen sind.
Die Abbildung 3 visualisiert dieses Prinzip.

2.2 Scala

Scala ist eine funktionale und objektorientierte Programmiersprache fiir die Java Virtual
Machine (JVM)? [Sca20a]. Seit 2001 wird Scala an der Ecole Polytechnique Fédérale de Lau-
sanne (EPFL) vom einem Team unter der Leitung von Martin Odersky entwickelt [Piel0, S.30].

4 siehe https://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html?
intcmp=3170

10

https://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html?intcmp=3170
https://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html?intcmp=3170

In Scala lésst sich im Vergleich zu Java mit weniger Code deutlich mehr ausdriicken. Zum einen
bendtigt Scala deutlich weniger Schliisselworter, zum anderen war das Designziel von Scala,
eine knappe, elegante und typsichere Programmierung zu ermoglichen [Piel0, S.30] [BraloO,
S.2]. Als Beispiel wird hierfiir das Pattern Matching in Scala herangezogen. Das Pattern
Matching in Scala stellt eine Verallgemeinerung der aus C-dhnlichen Programmiersprachen
bekannten switch-case Anweisung dar [BralO, S.114], ein Beispiel:

val t = "Ich bin ein String"

t match {
case r: String => println("String: " + r)
case r: Int => println("Int: " + r)

}

Mit der match Anweisung lassen sich hierbei nicht nur Typen priifen, sondern auch der Wert
einer Variablen.

Im Gegensatz zu vielen modernen Programmiersprachen ist Scala statisch typisiert. Das
bedeutet, der Typ aller Ausdriicke wird zur Kompilierzeit iiberpriift und nicht erst zur Laufzeit,
wie bei dynamisch typisierten Sprachen. Das Typsystem von Scala ist sehr ausgreift und
ldasst neben generischen Klassen und polymorphen Methoden auch Varianz- Annotationen,
Upper und Lower Bounds zu. Ein weiteres relevantes Merkmal von Scala ist die einfache
Erweiterbarkeit. Damit ist Scala fir die Erstellung von Domain Specific Language (DSL)s gut
geeignet [Bral0, S.2].

Es ist moglich, Java-Komponenten innerhalb von Scala zu benutzen, da Scala-Bytecode
mit Java-Bytecode kompatibel ist. Als Bytecode wird eine Sammlung von Befehlen fiir eine
virtuelle Maschine bezeichnet. Programmiersprachen wie Java und Scala werden nicht zu einem
direkten Maschinencode kompiliert, sondern zu einem Zwischencode, dem Bytecode®. Java-
und Scala-Bytecodes sind innerhalb der JVM lauffadhig und miteinander kompatibel. Dadurch
konnen Scala-Komponenten von Java-Komponenten benutzt werden und andersrum [Sca20b].

Hinweis: Diese Kompatibilitit ist in der Praxis hdufig mit Problemen verbunden. So kann Bei-
spielsweise in Scala ein Object, eine Singleton-Abstraktion®, im Package-Pfad direkt mit dem
Operator $ angesprochen werden, zum Beispiel de.maxbundscherer.example.Main$.
Das ist innerhalb von Java nicht moglich, d.h. das wiirde bei einem Aufruf innerhalb von Java
zu Problemen fiihren.

2.2.1 Nebenlaufigkeit und Seiteneffekte

Nachdem Scala und Java zueinander kompatibel und beide Programmiersprachen in der JVM
lauffahig sind, kénnen innerhalb von Scala die Java-Techniken, zum Beispiel Java-Threads
und Java-Threadpools, verwendet werden. In dieser Arbeit werden Scala Threads und Java

5 siehe https://www.mi.fu-berlin.de/inf/groups/ag-pr/Lehrveranstaltungen/
swpue—2013/Bytecode_2013-04-18.pdf
6 siehe https://docs.scala-lang.org/tour/singleton-objects.html

11

https://www.mi.fu-berlin.de/inf/groups/ag-pr/Lehrveranstaltungen/swpue-2013/Bytecode_2013-04-18.pdf
https://www.mi.fu-berlin.de/inf/groups/ag-pr/Lehrveranstaltungen/swpue-2013/Bytecode_2013-04-18.pdf
https://docs.scala-lang.org/tour/singleton-objects.html

Threads synonym verwendet, da diese sich technisch nicht unterscheiden”.

In Scala bietet sich aber eine sehr elegante Abstraktionsmoéglichkeit fiir die nebenldufige
Programmierung: das Aktorenmodell, vergleiche Abschnitt 2.1 [Bral0, S.193]. Das Aktoren-
modell wurde in Scala als Akka Actors implementiert und wird im folgenden Abschnitt 2.2.2
genauer erldutert.

Da Scala auch eine funktionale Sprache ist, versucht man, bereits iber das Sprachdesign
Seiteneffekte zu reduzieren®. Ein Seiteneffekt liegt dann vor, wenn eine Funktion beispiels-
weise den Wert einer globalen Variablen dndert. Dies kann insbesondere bei nebenléufiger
Ausfiithrung zu Race Condtions fithren, vergleiche Abschnitt 1.1.3. So sind in Scala beispielsweise
die Collections, wie z.B. List oder Map immutable (unverdnderlich).

2.2.2 Akka Actors

Akka ist ein Open-Source Toolkit fiir die Erstellung von parallelisierten, verteilten, ausfallsiche-
ren und nachrichtengesteuerten Anwendungen in Scala und Java [Akk20]. Akka implementiert
mit Akka Actors das Aktorenmodell, vergleiche Abschnitt 2.1. Akka ist fiir den Einsatz
innerhalb der JVM konzipiert und implementiert.

Synchronisieren von Aktoren

Nach dem Aktorenmodell besitzen die Aktoren jeweils ihren eigenen Zustand, der von auflen
nicht direkt einsehbar oder verdnderbar ist. Um mit einem Aktor interagieren zu kénnen, um
zum Beispiel dessen Zustand einzusehen oder zu verdndern, wird ausschliefllich in Form von
unverdnderbaren Nachrichten mit diesem kommuniziert, vergleiche Abschnitt 2.1.

In Scala stellt jeder Thread auch einen Akka Actor dar. Die Umkehrung gilt nicht, da
nicht jeder Akka Actor einen eigenen Thread benétigt [Bral0O, S.194]. Das heifit die Aktoren
miissen gegebenenfalls tiber Nachrichten miteinander synchronisiert werden. Hierfiir gibt es
beispielsweise zwei Moglichkeiten:

« Fire and Forget”: Ein Aktor A, sendet eine Nachricht an einen anderen Aktor A; und
wartet nicht auf die Antwort von A;. Der Aktor A, blockiert nicht, wahrend Aktor A
die Nachricht verarbeitet. Dies wird mit dem Aufruf von aktorB ! message innerhalb
des Aktors A, realisiert.

o Ask!'%: Ein Aktor A, sendet eine Nachricht an einen anderen Aktor A und wartet auf die
Antwort von Ay. Der Aktor A, blockiert, wihrend Aktor A, die Nachricht verarbeitet.
Dies wird mit dem Aufruf von aktorB ? message innerhalb des Aktors A, realisiert.
Dieser Ausdruck liefert ein Future zuriick, das einen Platzhalter fiir ein noch nicht exis-
tierendes Objekt darstellt. Die Zeit, die der Aktor A, auf den Aktor A, wartet, muss zum

7 siehe https://alvinalexander.com/scala/differences—-java-thread-vs-scala-future/

8 siehe https://www.informatik—aktuell.de/entwicklung/programmiersprachen/
funktionale-programmierung-mit-scala-herangehensweisen-und-konzepte.html

9 siehe https://doc.akka.io/docs/akka/current/typed/interaction-patterns.html#
fire—-and-forget

10 siehe https://doc.akka.io/docs/akka/current/typed/interaction-patterns.html#
request-response-with—-ask-between-two-actors

12

https://alvinalexander.com/scala/differences-java-thread-vs-scala-future/
https://www.informatik-aktuell.de/entwicklung/programmiersprachen/funktionale-programmierung-mit-scala-herangehensweisen-und-konzepte.html
https://www.informatik-aktuell.de/entwicklung/programmiersprachen/funktionale-programmierung-mit-scala-herangehensweisen-und-konzepte.html
https://doc.akka.io/docs/akka/current/typed/interaction-patterns.html#fire-and-forget
https://doc.akka.io/docs/akka/current/typed/interaction-patterns.html#fire-and-forget
https://doc.akka.io/docs/akka/current/typed/interaction-patterns.html#request-response-with-ask-between-two-actors
https://doc.akka.io/docs/akka/current/typed/interaction-patterns.html#request-response-with-ask-between-two-actors

Beispiel iiber den Aufruf von implicit val timeout = Timeout (5 seconds)
vorher definiert werden.

Moderne Betriebssysteme unterstiitzen Threads direkt, so bildet die JVM die Thread-
Verwaltung in der Regel auf das Betriebssystem ab. Ob die Laufzeitumgebung native Threads
nutzt, steht in der Spezifikation der jeweiligen JVM. Die 1-zu-1 Abbildung erméglicht eine
einfache Verteilung auf mehrere Prozessoren bzw. Prozessor-Kerne [Ull16, 15.1.2].

Ein Beispiel

An der folgenden exemplarischen Implementierung'' wird verdeutlicht, wie man mit einem
Akka Aktor arbeitet. Der TestActor in dieser Implementierung besitzt einen Zustand in
Form eines ganzzahligen Werts (Int).

Zunachst wird der Zustand State (...) des Aktors und
die Nachricht IncreaseBalance (.. .), die vom Interface (in Scala als Trait bezeichnet)
Request erbt, deklariert:

//Declare request wrapper and internal state
sealed trait Request
private case class State(accountBalance: Int)

//Declare concrete request
case class IncreaseBalance (amount: Int) extends Request

Anschlieflend wird der Zustand des Aktors bei der Initialisierung definiert
(accountBalance = 0) und das Verhalten auf eingehende Nachrichten vom Typ
IncreaseBalance (...) definiert: Der Aktor wird bei eingehenden Nachrichten von diesem
Typ den Wert seines Zustands um den in der Nachricht definierten Wert inkrementieren und
anschliefend per Logger den Wert seines Zustand, vor und nach der Verdnderung, ausgeben:

//Default state is idle (define internal state)
def apply(): Behavior[Request] = applyldle(State(accountBalance = 0))

//Process messages in state idle
private def applyIdle(state: State): Behavior[Request] =
Behaviors.receive { (context, message) =>
message match {

case cmd: IncreaseBalance =>

val newState: State = state.copy(accountBalance =
state.accountBalance + cmd.amount)

context.log.info(s"0ld balance was (${state.accountBalance}) / New
balance is (${newState.accountBalance})")

applyIdle (newState)

11 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/examples/MainExample.scala

13

https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/examples/MainExample.scala
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/examples/MainExample.scala

Abschlieflend wird noch das Aktorensystem mit dem TestActor gestartet und es werden
dem Aktor zwei Nachrichten vom Typ IncreaseBalance (...) zugestellt:

//Init actor system and actor
private val actorSystem: ActorSystem[TestActor.Request] =
ActorSystem(TestActor (), "actorSystem")

//Fire and forget two requests
actorSystem ! TestActor.IncreaseBalance (amount
actorSystem ! TestActor.IncreaseBalance (amount = -5)

Il
=
o

Dies fiihrt zu folgender Konsolenausgabe:

0ld balance was (0) / New balance 1is (10)
0l1ld balance was (10) / New balance is (5)

Hinweis: Da die Ausfiithrungsreihenfolge nichtdeterministisch ist, ist es moglich, dass die
Nachrichten in unterschiedlichen Reihenfolgen zugestellt werden, vergleiche Abschnitt 1.1.3.

Kompatibilitat mit Computercluster(n)

Ein Computercluster, auch Rechnerverbund genannt, bezeichnet eine Anzahl von vernetzten
Computern. Die Computer werden hierbei haufig iber das TCP /IP-Protokoll miteinander
verbunden. Computercluster sind hiufig im Cloud-Umfeld anzutreffen, siehe Erlauterung zur
verteilten Verarbeitung im Abschnitt 1.1.1.

Akka unterstiitzt sowohl den Betrieb auf einem Computer als auch den Betrieb auf Computer-
clustern:

o Bei Betrieb auf einem Computer: Es ist keine zusétzliche Konfiguration oder Implemen-
tierung notwendig, da dies der Standardkonfiguration entspricht.

o Bei Betrieb auf einem Computercluster: Es ist es zum Beispiel notwendig, die Nachrichten
tiber das TCP /IP-Protokoll zu transportieren.

Akka bietet mit Akka Remote!? eine Abstraktion fiir den Entwickler, womit Aktoren
iiber das TCP /TP-Protokoll miteinander kommunizieren konnen. Akka Remote sollte aber
innerhalb eines Produktivsystems nicht ohne Akka Cluster'? verwendet werden, da diese
Erweiterung Akka Remote beinhaltet und noch zusitzliche Funktionen wie Service Discovery'

12 siehe https://doc.akka.io/docs/akka/current/remoting.html
13 siehe https://doc.akka.io/docs/akka/current/typed/cluster.html
14 siehe https://doc.akka.io/docs/akka/current/discovery/index.html

14

https://doc.akka.io/docs/akka/current/remoting.html
https://doc.akka.io/docs/akka/current/typed/cluster.html
https://doc.akka.io/docs/akka/current/discovery/index.html

oder automatische Health Checks'® mit sich bringt. Auf Akka Remote und Akka Cluster wird
im Rahmen dieser Arbeit nicht mehr eingegangen, da dies sonst den Rahmen sprengen wiirde.

Hinweis: Standardméfig verwendet Akka die Java-Standardserialisierung (Java Object Se-
rialization), um Nachrichten serialisieren bzw. wieder deserialisieren zu kénnen. Diese wird
aber nicht empfohlen, da sie zwischen unterschiedlichen Java-Versionen und Systemen nicht
bindrkompatibel ist'6.

2.3 Filtern von Primzahlen als Beispielimplementierung

Um den Speedup, vergleiche Abschnitt 1.2.2, greifbar machen zu kénnen, wurde eine Anwendung
in Scala nach dem Aktorenmodell implementiert basierend auf Akka Actors, die Primzahlen
aus einem vorher definierten Bereich filtert.

2.3.1 Aufbau der Anwendung

Die Beispielimplementierung!” filtert Primzahlen aus einem vorher definiertem Bereich, misst
dabei die bendtigte Zeit und dokumentiert diese in einer CSV-Datei. Die Anwendung kann die
Filterung auf mehrere Threads verteilen, damit auch iiber mehrere Prozessoren bzw. Prozessor-
Kerne, beachte Hinweis aus Abschnitt 1.2. Um gegen Messabweichungen zum Beispiel wegen
Garbage Collection (GC)-Zeiten, I0-Zugriffszeiten oder Cache-Stufen vorzugehen, kénnen die
Léufe mehrfach automatisch wiederholt werden. Die Abbildung 4 stellt groben den Ablauf der
Anwendung als Sequenzdiagramm dar.

Die Parameter der Anwendung'® lassen sich wie folgt beschreiben:

« maxWorkersPerRun: Gibt an, auf wie viele Threads die Filterung aufgeteilt werden
soll und wird im Folgenden als Verteilungsstufe bezeichnet. Beispielsweise gibt der Wert
1,2 hier an, dass die Filterung erst auf einem Thread stattfindet und anschliefend auf
zwei Threads verteilt wird.

o repeatRun: Gibt an, wie oft die Laufe pro Verteilungsstufe (maxWorkers aus mazWor-
kersPerRun) wiederholt werden sollen. Der Wert dieses Parameters sollte bei starken
Messabweichungen erhéht werden. Beispielsweise gibt der Wert 5 an, dass die Messung
fiinfmal pro Verteilungsstufe wiederholt werden soll.

e to: Gibt an, bis zu welchem Wert die Primzahlen gefiltert werden sollen. Dieser wird, falls
nicht anders angegeben, automatisch aus den Verteilungsstufen (mazWorkersPerRun)
berechnet: Da die Aufteilung der Last gleichméBig sein soll, stellt dieser Wert das kleinste
gemeinsame Vielfache der Verteilungsstufen dar. Beispielsweise wird der Wert aus den
Verteilungsstufen 1 und 2 berechnet: Das kleinste gemeinsame Vielfache ist hierbei 2.

15 siehe https://doc.akka.io/docs/akka-management/current/healthchecks.html

16 siehe https://doc.akka.io/docs/akka/2.5.31/serialization.html

17 siehe https://github.com/maxbundscherer/scala—-akka-prime-speedup

18 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/Main.scala

15

https://doc.akka.io/docs/akka-management/current/healthchecks.html
https://doc.akka.io/docs/akka/2.5.31/serialization.html
https://github.com/maxbundscherer/scala-akka-prime-speedup
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/Main.scala
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/Main.scala

JobController SupervisorActor WorkerActor (1/2)

WorkerActor (2/2)

Parameter von Applikation
maxWorkersPerRun=1,2,3
repeatRun=5

to=6 (errechnet)

Anfang Wiederholungsbereich
far maxWorkers aus maxWorkersPerRun, hier=2
und insgesamt repeatRun mal

Initialisierung Aktorensystem
mit SupervisorActor

to=6

maxWorkers=2 >|

to auf 2 ranges aufteilen Iﬁ

Initialisierung WorkerActor
und Teillauf (1/2)
range=1-3

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
»

Ll
Initialisierung WorkerActor
und Teillauf (2/2) |
range=4-6 X

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
»
>

Teilldufe

aus range

Filtere Primzahlen

Teillaufergebnisse (1/2) :
results=2,3 [

Teillaufergebnisse (2/2)
results=5

7 Y Y

Teillaufergebnisse fortlaufend aggregieren
Bei Vollstéandigkeit: Messwerte schreiben
und Aktorensystem herunterfahren

_, Information iber Fertigstellung
¢

Ende Wiederholungsbereich Iﬁ

Abbildung 4: Sequenzdiagramm Filtern von Primzahlen als Beispielimplementierung

16

Hinweise zur Filterung und Verteilung

Die Zahlen werden in der Beispielanwendung mithilfe dieser sehr trivialen Implementierung
gefiltert:

def isPrime(n: Int): Boolean = ! ((2 until n-1) exists (n % == 0))

Im Rahmen dieser Arbeit ist dies ausreichend, da nicht die effiziente Filterung von Primzahlen
im Vordergrund steht und alle Laufe diese Methodik?® verwenden.

Die Verteilung?! erfolgt ziemlich rudimentéir; das bedeutet beispielsweise bei einem Ziel-
bereich von 0 — 100 und zwei Aktoren, dass der Zielbereich auf 0 — 50 und auf 51 — 100
"gleichméaBig" aufgeteilt wird. Diese Strategie fiihrt aber dazu, dass die Bereiche mit niedrige-
ren Werten schneller abgearbeitet werden kénnen als die Bereiche mit hoheren Werten. Im
Rahmen dieser Arbeit ist dies ausreichend, dem Leser sollte aber bewusst werden, dass diese
Verteilungsstrategie Auswirkungen auf die Laufzeit hat, da sich nach der Abarbeitung eines
Zielbereichs der Aktor herunterfihrt und wieder Ressourcen auf der Maschine frei werden.

2.3.2 Referenzsystem und die gewahlten Parameter

Die Messungen wurden auf einem eigenem Server durchgefiihrt. Das Referenzsystem weist
folgende Eigenschaften auf:

o Anbieter: Amazon Web Services (AWS)

o Betriebssystem: Ubuntu Server 20.04 LTS (HVM) (ami-0b90a8636b6f955¢1)
e Festplatte: SSD mit 8 GB

e Prozessor: 4vCPU

e Arbeitsspeicher: 16 GB

Um die Installation auf dem genannten Referenzsystem zu vereinfachen und zu automatisie-
ren, wurde ein Skript erstellt, dieses ldsst sich dem Abschnitt A.3.1 entnehmen. Um die Laufe
auf dem genannten Referenzsystem zu vereinfachen und zu automatisieren, wurde ein Skript
erstellt, dieses lasst sich dem Abschnitt A.3.2 entnehmen.

Die Parameter wurden wie folgt gewéahlt:

e repeatRun: 5
« maxWorkersPerRun: 1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16

o to (errechnet): 720720

17

time

lell

EXi]

15

10

B 2 1 1 12 1B 5 16

maxWorkers

7

Abbildung 5:

Darstellung der Laufzeit anhand einer festen Problemgrofie und variierenden Verteilungs-
stufen (maxWorkers) der Beispielimplementierung. Die einzelnen Messungen werden
zusétzlich iiber die Durchschnitte (Mean) und die Mittelwerte (Median) pro Verteilungs-
stufe angegeben.

speedup

is

30

15

10

maxWorkers

Abbildung 6:

Darstellung des Speedups anhand einer festen Problemgrofie und variierenden Verteilungs-
stufen (maxWorkers) der Beispielimplementierung. Die einzelnen Messungen werden tiber
die Durchschnitte (Mean) und die Mittelwerte (Median) pro Verteilungsstufe angegeben.

18

2.3.3 Auswertung von Laufzeit und Speedup

Zur Auswertung der Liaufe wurde ein Jupyter Notebook®? entwickelt?®. Die Grafiken wurden
mithilfe der Python-Bibliothek Matplotlib** erstellt. Die Ergebnisse der Laufe lassen sich im
Abschnitt A.1 einsehen. Das Log der Messung lésst sich im Abschnitt A.2 einsehen.

Die Daten wurden zunéchst eingelesen und ausgewertet: Es wurden insgesamt 80 Messungen
durchgefiihrt, wobei pro Verteilungsstufe 1 — 16 die Messungen 5 mal wiederholt worden sind.
Damit ergibt sich ein berechneter Zielbereich von 0 — 720720, vergleiche to aus Abschnitt 2.3.1.
In diesem Bereich wurden 58084 Zahlen als Primzahlen klassifiziert, alle Messungen stimmen
mit diesem Ergebnis iiberein. Dem Log lisst sich entnehmen, dass der erste Lauf um 08:21:19
Uhr begonnen hat und der letzte Lauf um 11:57:26 Uhr endete, der gesamte Vorgang dauerte
folglich insgesamt ungefihr 3 Stunden und 36 Minuten.

Hinweis: Wie bereits im Abschnitt 1.2 beschrieben, wird hier die Anzahl der Prozesso-
ren bzw. der Prozessor-Kerne analog auf die Anzahl der Threads, die gemeinsam an einer
Aufgabe arbeiten, angewendet.

Auswertung der Laufzeit

AnschlieBend wurde die Laufzeit T),(n), vergleiche Abschnitt 1.2.1, ausgewertet. Da die Pro-
blemgrofle n, hier durch to definiert, innerhalb der Laufe konstant ist, wurde die Anzahl der
Threads variiert, hier durch mazWorkers (Verteilungsstufe). Da die einzelnen Messungen pro
Verteilungsstufe variieren, werden diese {iber den Mittelwert und dem Durchschnitt angege-
ben. Die Abbildung 5 stellt die Laufzeit in Relation zu der Anzahl der verwendeten Threads dar.

Den Messungen und der Grafik ldsst sich entnehmen, dass die Verteilung {iber mehrere
Threads, damit auch die Verteilung auf mehrere Prozessoren bzw. Prozessor-Kerne, einen
Einfluss auf die Laufzeit hat. In diesem Fall wurde die Filterung von Primzahlen aus einem
vorher vorgegeben festen Bereich auf mehrere Threads verteilt. Die Geschwindigkeitssteigerung
pro zusétzlichem Thread nimmt mit der Anzahl der Threads deutlich ab. Das ist aber nicht
weiter verwunderlich, da die Overheadzeit auch mit Anzahl der beteiligten Threads zunimmt
und die Laufzeit sich mitunter aus der Overheadzeit zusammensetzt, vergleiche Abschnitt 1.2.1.

Den Messungen und der Grafik ldsst sich auch entnehmen, dass ab der Verteilungsstufe
8 die Laufzeit wieder zunimmt, d.h. der Server konnte die Berechnungen nicht mehr effizient
und sinnvoll iiber die (virtuellen) Prozessoren bzw. Prozessor-Kerne verteilen. Die Griinde
dafiir lassen sich nur schwer ermitteln, zum Beispiel mit dem Einsatz von Software-Profilern,

19 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/utils/Calculator.scala

20 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/actors/WorkerActor.scala

21 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/actors/SupervisorActor.scala

22 siehe https://jupyter.org/

23 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/
reports/report.ipynb

24 siehe https://matplotlib.org/

19

https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/utils/Calculator.scala
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/utils/Calculator.scala
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/actors/WorkerActor.scala
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/actors/WorkerActor.scala
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/actors/SupervisorActor.scala
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/actors/SupervisorActor.scala
https://jupyter.org/
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/reports/report.ipynb
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/reports/report.ipynb
https://matplotlib.org/

im Fall von Scala kann Java VisualVM?® herangezogen werden. Auch das Monitoring von
Betriebssystem und Hardware kann bei der Aufklarung unterstiitzen. Im Rahmen dieser
Arbeit wurden die genauen Griinde hierfiir nicht ermittelt, da diese sich wahrscheinlich nicht
mit einem Mehrwert fiir den Leser auf andere Betriebssysteme und Hardware {ibertragen
lassen. Vermutet wird aber, dass der Server sich im Grenzbereich befindet bzw. kiinstlich
durch den Cloud-Anbieter limitiert wird, wodurch zum Beispiel die Befehle in einer (virtuellen)
Prozessoren-Pipeline haufiger verworfen werden (pipeline flush) und der Server hiufiger Daten
aus dem Arbeitsspeicher auf die Festplatte auslagern muss (swapping). Diese Effekte werden
zusétzlich durch den Einsatz von Scala innerhalb der JVM verstarkt, da durch die Abstraktion
die eigentliche Hardware nicht effizient genutzt werden kann. Zu beachten gilt auch, dass die
Verteilung der Zielbereiche durch die Beispielimplementierung erfolgt, vergleiche Abschnitt
2.3.1. Beim Einsatz von anderer Hardware, zum Beispiel von Prozessoren mit mehr Kernen,
tritt dieser Effekt erst bei hoheren Verteilungsstufen ein.

Auswertung des Speedups

Abschlieend wurde der Speedup S,(n) = %, vergleiche Abschnitt 1.2.2, ausgewertet. Da
die Problemgrofie n, hier durch to definiert, innerhalb der Laufe konstant ist, wurde die
Anzahl der Threads variiert, hier durch mazWorkers (Verteilungsstufe). Zu beachten gilt
hierbei, dass T} (n) = T'(n) gesetzt worden ist, da hier nur die Laufe miteinander verglichen
werden sollen und die Ergebnisse auflerhalb der Laufe keine Aussagekraft besitzen. Da die
einzelnen Messungen pro Verteilungsstufe variieren, werden diese iiber den Mittelwert und
den Durchschnitt angegeben. Die Abbildung 6 stellt den Speedup in Relation zur Anzahl der

verwendeten Threads dar.

Da der Speedup die Reduktion der Laufzeit angibt, lassen sich die Aussagen von der Auswer-
tung zur Laufzeit auch auf diese Auswertung anwenden. Den Messungen und der Grafik lésst
sich auch entnehmen, dass der Speedup nicht linear zunimmt, vergleiche Aussagen zu linearem
und realem Speedup aus Abschnitt 1.2.2. D.h. die Geschwindigkeitssteigerung nimmt pro
zusédtzlicher Verteilungsstufe ab. Das bedeutet fiir die Applikation, dass die Verwendung von
beispielsweise zwei Prozessoren die Laufzeit nicht um die Hélfte reduziert.

Fazit Giber beide Auswertungen

Die Auswertungen zeigen, dass die Verteilung der Berechnungen iiber mehrere Threads und
damit iber mehrere Prozessoren bzw. Prozessor-Kerne eine Geschwindigkeitssteigerung, also
eine Reduktion der Laufzeit, bedeutet. Die Geschwindigkeitssteigerung nimmt pro zusatzlicher
Verteilungsstufe ab, da der Overhead immer stirker zunimmt, der sich direkt auf die Laufzeit
auswirkt. Ab einer bestimmten Verteilungsstufe nimmt sogar die Laufzeit wieder zu, was sich
negativ auf den Speedup auswirkt.

Auf andere Applikationen tibertragen bedeutet das, dass die Reduktion der Laufzeit iiber
die Verteilung der Berechnungen auf mehrere Prozessoren bzw. Prozessor-Kerne moglich ist,
unter Beriicksichtigung dessen, dass der Overhead, zum Beispiel durch die Synchronisierung
von Prozessor-Kernen zunimmt. Das bedeutet auch, dass das Hinzufiigen von weiteren Pro-
zessoren bzw. Prozessor-Kernen sich nicht linear auf die Verbesserung der Laufzeit auswirkt;

25 siehe https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/profiler.
html

20

https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/profiler.html
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/profiler.html

so fiihrt das Hinzufligen eines weiteren Prozessors nicht zu einer Reduktion der Laufzeit um 50%.

Es liegt an den Entwicklern, die Anwendung sinnvoll nebenldufig zu implementieren, um
eine sinnvolle Parallelisierung von Berechnungen zu ermdéglichen und nicht die "gewonnene'
Zeit durch die Steigerung des Overheads zu verlieren. Es sollte auch beachtet werden, dass es
Vorgénge gibt, die nicht parallelisiert werden koénnen, vergleiche Hinweis zur Fibonacci-Folge
aus Abschnitt 2.

2.4 Race Condition an einem Beispiel

SupervisorActor WorkerActor (1/2) WorkerActor (2/2)
I

Zustand (Int)
value=0

Starte Aktor mit
Intervall >l

|
|
| Starte Aktor mit
! Intervall !
I I
| Frage Wert ab (n) |

“

Erhalte Wert (n) >:

Frage Wert ab (n)

¥y 1 ____X

Erhalte Wert (n)
I

Inkrementiere
erhaltenen Wert (n)

|
|
:4
|
|
|
|
|

Sende neuen Wert (n)

I
< |
Ubernehme Wert (n) ﬁ :

|
I
|

Inkrementiere
erhaltenen Wert (n)

Sende neueﬁ Wert (n)

<
Ubernehme Wert (n) ﬁ

Abbildung 7: Sequenzdiagramm Race Condition als Beispielimplementierung
Im Abschnitt 1.1.3 wurde erlautert, dass eine Race Condition eine Konstellation bezeichnet,
bei der das Ergebnis einer Operation vom zeitlichen Ablauf bestimmter Einzeloperationen

abhangt und Fehler aus diesen héufig schwer reproduzierbar und damit schwer zu finden sind.

Um diese Aussage etwas greifbarer machen zu kénnen, wurde eine Konstellation implemen-

21

tiert26, bei der es zu einer Race Condition kommt. Die Beispielimplementierung startet zunichst
einen Aktor (SupervisorActor) mit einem Zustand in Form eines ganzzahligen Werts (Int).
Anschlieflend startet dieser Aktor zwei Aktoren (WokerActor), die in einem festen Intervall
den Wert des Zustands vom SupervisorActor abfragen, inkrementieren und anschliefend
dem SupervisorActor zuriicksenden. Dieser iibernimmt den Wert und gibt den neuen und
alten Wert per Logger aus. Abbildung 7 stellt grob den Ablauf der Anwendung als Sequenz-
diagramm dar.

Das fiihrt zunéchst zur erwartenden Konsolenausgabe:

[11,188] [SupervisorActor$] - Start run with initial State(0)
[11,192] [WorkerActor$] - Start periodic timer

[11,192] [WorkerActor$] - Start periodic timer

[11,719] [SupervisorActor$] — 0OldState State(0) / NewState State (0)
[11,719] [SupervisorActor$] - 0OldState State(l) / NewState State (1)
[12,204] [SupervisorActor$] - 0ldState State(l) / NewState State (1)
[12,204] [SupervisorActor$] - 0ldState State(2) / NewState State(2)
[12,704] [SupervisorActor$] — OldState State(2) / NewState State (2)
[12,705] [SupervisorActor$] — OldState State(3) / NewState State (3)
[13,204] [SupervisorActor$] - 0OldState State(3) / NewState State (3)

Die ersten in eckigen Klammern angegeben Werte, z.B.: [13,204] stehen dafiir, dass die Zeile

in der Sekunde 13 und Millisekunde 204 geloggt worden ist. Wie man an der Ausgabe sehen
kann, sind die geloggten Ergebnisse zunéichst wie erwartet: Die Aktoren WokerActor erhalten
jeweils den gleichen Wert vom SupervisorActor, inkrementieren diesen, anschlieend wird
dieser wieder vom SupervisorActor iibernommen. Der Wert wird also immer doppelt
inkrementiert, bis auf die erste Inkrementierung, da die Aktoren hier noch stérker zeitlich
versetzt arbeiten (Platzierungszeit ist unterschiedlich). Doch nach kurzer Zeit:

[06,206] [SupervisorActor$] — OldState State(110) / NewState State(110)
[06,705] [SupervisorActor$] - OldState State(110) / NewState State(110)
[06,705] [SupervisorActor$] - 0OldState State(111) / NewState State(111)
[07,206] [SupervisorActor$] - 0OldState State(111l) / NewState State(111)
[07,206] [SupervisorActor$] — OldState State(112) / NewState State(112)
[07,705] [SupervisorActor$] — OldState State(113) / NewState State(113)
[07,706] [SupervisorActor$] — OldState State(114) / NewState State(114)
[08,206] [SupervisorActor$] - OldState State(114) / NewState State(114)
[08,206] [SupervisorActor$] - 0OldState State(115) / NewState State(115)
[08,706] [SupervisorActor$] - 0OldState State(115) / NewState State(115)

In den Berechnungen hat sich nach kurzer Zeit bereits ein Fehler eingeschlichen: Hier wurde der
Wert 112 nicht wie erwartend doppelt inkrementiert. Das kann zum Beispiel passieren, wenn der
Thread von einem WorkerActor vom Scheduler kurzzeitig pausiert wird, vergleiche Abschnitt
1.1.2. Das fiihrt dazu, dass der "pausierte" WorkerActor den nicht-inkrementierten Wert
nicht "mitbekommt" und daher den bereits inkrementierten Wert noch einmal inkrementiert.

26 siehe https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/
main/scala/de/maxbundscherer/akka/scala/prim/examples/RCExample.scala

22

https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/examples/RCExample.scala
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/src/main/scala/de/maxbundscherer/akka/scala/prim/examples/RCExample.scala

2.5 Ausblick Steigerung der Ausfallsicherheit

Diese Arbeit mochte noch einen Ausblick dariiber geben, wie man Anwendungen iiber die
Verteilung auf mehrere Computer ausfallsicherer gestalteten kann. Der Begriff Ausfallsicher-
heit ist nicht eindeutig definiert, der Autor der Arbeit versteht darunter, eine Applikation
durch die Verteilung auf mehrere Computer, zum Beispiel Server, also durch den Einsatz von
Redundanzen, gegen die Nicht-Erreichbarkeit zu schiitzen.

Verwiesen wird zunéchst auf das CAP Theorem, auch Brewers Theorem genannt: Nach
diesem Theorem sind nur zwei von drei moglichen Eigenschaften in einem verteilen System
moglich [Gil02]:

» Konsistenz (Consistency): Die gesamten gespeicherten Daten sind konsistent.
o Verfiigbarkeit (Availability): Anfragen an das System werden beantwortet.

« Partitionstoleranz (Partition tolerance): Das System arbeitet auch weiter, wenn zum
Beispiel einzelne Server innerhalb eines Clusters nicht mehr erreichbar sind.

Da bei einer Verteilung iiber mehrere Server gewéhrleistet werden muss, dass das System
auch weiterarbeiten kann, wenn einzelne Server nicht mehr erreichbar sind, muss auf jeden Fall
die Eigenschaft Partition tolerance erfiillt sein. Dem Entwickler steht nun frei, das System
mit einer weiteren FEigenschaft zu implementieren:

e C+P: Die Daten sind global gesehen immer konsistent, das System ist evtl. nicht zu
jedem Zeitpunkt erreichbar. Als Datenbank kénnte hierfiir beispielsweise Redis?” oder
MongoDB?8 verwendet werden.

¢ A-+P: Die Daten sind global gesehen nicht immer konsistent, das System ist aber immer
erreichbar. Als Datenbank kénnte hierfiir Apache Cassandra®® verwendet werden. In
diesem Kontext fallt haufig der Begriff Eventual Consistency?, auf diesen kann aber
im Rahmen der Arbeit nicht mehr eingegangen werden, da dies sonst den Rahmen der
Arbeit sprengen wiirde.

Es sollte hierbei erwdhnt werden, dass es sich bei dem CAP-Theorem um theoretische Eigen-
schaften handelt, so kann beispielsweise die Availability nicht gewéhrleistet werden, wenn die
Internet-Anbindung des Rechenzentrums ausféllt.

Die Verteilung von Akka Aktoren iiber mehrere Server kann zum Beispiel {iber den Ein-
satz von Akka Cluster, vergleiche Abschnitt 2.2.2, gewéhrleistet werden. Akka Cluster gibt
nicht vor, ob es sich um ein System mit den Eigenschaften C+P oder A4+P handelt. Diese
Eigenschaften zeichnen sich zum Beispiel durch Verwendung einer geeigneten Datenbank und
der Implementierung selbst ab.

Des weiteren sollte darauf geachtet werden, dass Daten nicht verloren gehen, wenn ein Compu-
ter aus dem Cluster nicht mehr reagiert und neugestartet wird: Um den Zustand eines Akka

27 siehe https://redis.io/

28 siehe https://www.mongodb.com/

29 siehe https://cassandra.apache.org/

30 siehe https://dl.acm.org/doi/10.1145/1435417.1435432

23

https://redis.io/
https://www.mongodb.com/
https://cassandra.apache.org/
https://dl.acm.org/doi/10.1145/1435417.1435432

Aktors nach dem Beenden wiederherstellen zu kénnen, kann Akka Persistence3! verwendet

werden. Akka Persistence ist eine Erweiterung fiir Akka, die es ermoglicht, den Zustand eines
Akka Aktors mithilfe der Speicherung und Verwaltung von Events (die durch die eingehenden
Nachrichten definiert werden) und optionalen Momentaufnahmen (Snapshots) auch nach dem
Beenden der Aktoren wiederherzustellen.

Damit ist Akka Persistence eine Implementierung des Event Sourcing (ES)-Ansatzes. Beim
ES werden alle Verédnderungen des Zustands eines Systems in Form von Events abgebildet
[Pacl8, S.115]. Durch diese Architekturentscheidung ist es moglich, das komplette System zu
jedem Zeitpunkt wiederherzustellen. Das unterstiitzt nicht nur bei der Fehlersuche, sondern
ermOglicht es auch, besser zu verstehen, wie mit dem System gearbeitet wird.

Im Abschnitt 1.1.3 wurde erwdhnt, dass zum Beispiels Deadlocks fiir Cloud-Umgebungen
von besonderer Relevanz sind, da diese zu einem Totalausfall fithren kénnten. Ein Deadlock
konnte beispielsweise entstehen, wenn ein Akka Aktor auf einen anderen wartet, der aber nicht
antwortet und evtl. selbst auf einen Aktor wartet. Um dies zu vermeiden, kann beispielsweise
ein Akka Aktor auf einen anderen Aktor nur eine maximale Zeit warten, weshalb bei ask, ver-
gleiche Abschnitt 2.2.2, diese Zeit definiert werden musste. Falls in der vorgegebenen Zeit keine
Antwort eingetroffen ist, ldsst Akka den Aktor abstiirzen und neustarten. Dieses Verhalten
wird in der Supervisor Strategie3? von Akka definiert.

31 siehe https://doc.akka.io/docs/akka/current/persistence.html
32 siehe https://doc.akka.io/docs/akka/current/fault-tolerance.html

24

https://doc.akka.io/docs/akka/current/persistence.html
https://doc.akka.io/docs/akka/current/fault-tolerance.html

A Anange

A.1 Ergebnisse der Messungen

Die Ergebnisse der Messungen lassen sich unter https://github.com/maxbundscherer/
scala-akka-prime-speedup/blob/master/results.csv einsehen:

to, resultsSize, startTime, maxWorkers, time
720720,58084,1076321827730,1,290840815916
720720,58084,1367225151264,1,291387615803
720720,58084,1658643477235,1,278438275264
720720,58084,1937127234899,1,278406359526
720720,58084,2215566355452,1,278412696104
720720,58084,2494027662397,2,204721940674
720720,58084,2698783298022,2,204715441299
720720,58084,2903529989798,2,204732259299
720720,58084,3108289888033,2,204738063774
720720,58084,3313072275031,2,204776110272
720720,58084,3517888044136,3,150731133757
720720,58084,3668658094731,3,150720842650
[...]

Hinweis: Die Ergebnisse wurden mit [...] gekiirzt.

A.2 Log der Messlaufe

Das Log zu den Messungen lasst sich unter https://github.com/maxbundscherer/
scala-akka-prime-speedup/blob/master/log.txt einsehen:

[info] welcome to sbt 1.3.12 (Private Build Java 13.0.3)

[info] loading project definition from
/home/ubuntu/scala-akka-prime/project

[info] loading settings for project scala-akka-prime from build.sbt

[info] set current project to scala-akka-prime (in build
file:/home/ubuntu/scala-akka-prime/)

[info] Compiling 1 Scala source to
/home/ubuntu/scala-akka-prime/target/scala-2.13/classes

[info] Done compiling.

[info] running de.maxbundscherer.akka.scala.prim.Main

[2020-07-17 08:21:19,681] [INFO] [akka.event.slf4j.S1fd4djlLogger] -
S1f4jLogger started {}

[2020-07-17 08:21:19,706] [INFO]
[de.maxbundscherer.akka.scala.prim.actors.SupervisorActor$] - Start
run (StartRunCmd (720720, 1, results.csv))
{akkaAddress=akka://actorSystem, akkaSource=akka://actorSystem/user,
sourceActorSystem=actorSystem}

[2020-07-17 08:26:10,552] [INFO]
[de.maxbundscherer.akka.scala.prim.actors.SupervisorActors$] -
Finished run (StartRunCmd(720720,1,results.csv))
{akkaAddress=akka://actorSystem, akkaSource=akka://actorSystem/user,
sourceActorSystem=actorSystem}

[...]

Hinweis: Das Log wurde mit [...] gekiirzt.

25

https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/results.csv
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/results.csv
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/log.txt
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/log.txt

A.3 Skripte fir AWS EC2 Instanzen mit Ubuntu Server 20.x

Fiir die Messungen wurde ein Skript fiir die Installation und ein Skript fiir den eigentlichen
Lauf geschrieben.

A.3.1 EC2 Installation

Der Skript lésst sich unter
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/
ec2-install. sh einsehen:

echo "JAVA INSTALL"

sudo apt—-get update
sudo apt install openjdk-13-jre-headless

echo "SBT INSTALL"

echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee -a
/etc/apt/sources.list.d/sbt.list

curl -sL "https://keyserver.ubuntu.com/pks/lookup?op=get&search=[...]1" |
sudo apt-key add

sudo apt-get update

sudo apt-get install sbt

echo "GIT CLONE"
git clone https://github.com/maxbundscherer/scala-akka-prime

Hinweis: Das Skript wurde mit [...] gekiirzt.

A.3.2 EC2 Lauf

Der Skript ldsst sich unter
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/
ec2-run.sh einsehen:

echo "SET SBT OPTS"
export SBT_OPTS="-Xss2M -Xms4G -Xmx1l5G"

echo "RUN SBT"
sbt run >> log.txt

echo "SHUTDOWN SERVER"
sudo shutdown now

Hinweis: Das Skript wurde mit [...] gekirzt.

26

https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/ec2-install.sh
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/ec2-install.sh
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/ec2-run.sh
https://github.com/maxbundscherer/scala-akka-prime-speedup/blob/master/ec2-run.sh

Literatur

[Akk20]

[Ben15]

[Bral0]
Gil02]

[HewT73]

[Imgal

[Imgb]

[Pacl8]

[Piel0]

[Raul2]

[Ris16]

[Roel6)

[Sca20a]

[Sca20b]

[Uel19]

[U1116]

[Vog12]

Akka: Offizieller Internetauftritt. https://akka.io/, 2020. Abgerufen am
14.07.2020.

G. Bengel. In Masterkurs Parallele und Verteilte Systeme (978-3-8348-2151-5).
Springer, 2015.

O. Braun. In Scala (978-3-446-42399-2). Hanser, 2010.

S. Gilbert. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. https://dl.acm.org/doi/10.1145/564585.
564601, 2002. Heruntergeladen von https://users.ece.cmu.edu/~adrian/
731-sp04/readings/GL-cap.pdf - Abgerufen am 25.07.2020.

C. Hewitt. A universal modular ACTOR, formalism for artificial intelligence. https:
//dl.acm.org/doi/10.5555/1624775.1624804, 1973. Heruntergeladen von
https://www.1ijcai.org/Proceedings/73/Papers/027B.pdf - Abgerufen
am 14.07.2020.

Brianstorti - The actor model in 10 minutes - Bild Exemplarische Darstellung Akto-
renmodell. https://www.brianstorti.com/the—actor-model/. Abgerufen
am 14.07.2020.

Wikimedia Commons - Bild Exemplarische Darstellung FIFO. https://commons.
wikimedia.org/wiki/File:Fifo_queue.png. Abgerufen am 14.07.2020.

V. Pacheco. In Microservice Patterns and Best Practices (9781788471206). Packt
Publishing, 2018.

L. Piepmeyer. In Grundkurs funktionale Programmierung mit Scala (978-3-446-
42416-6). Hanser, 2010.

T. Rauber. In Parallele Programmierung (978-3-642-13604-7). Springer, 2012.

S. Ristov. Superlinear Speedup in HPC Systems: why and when? http://dx.
doi.org/10.15439/2016F498, 2016. DOI: 10.15439/2016F498 - Abgerufen am
12.07.2020.

R. Roestenburg. In Akka in Action (978-1617291012). Manning Publications, 2016.

Scala: Offizieller Internetauftritt. https://www.scala-lang.org/, 2020. Abge-
rufen am 14.07.2020.

Scala: Seamless integration with Java. https://www.scala-lang.org/old/
node /25, 2020. Abgerufen am 14.07.2020.

M. Uelschen. In Software Engineering paralleler Systeme (978-3-658-25343-1). Sprin-
ger, 2019.

C. Ullenboom. Java ist auch eine Insel. http://openbook.rheinwerk-verlag.
de/javainsel/, 2016. Abgerufen am 12.07.2020.

C. Vogt. In Nebenldufige Programmierung (978-3-446-43201-7). Hanser, 2012.

27

https://akka.io/
https://dl.acm.org/doi/10.1145/564585.564601
https://dl.acm.org/doi/10.1145/564585.564601
https://users.ece.cmu.edu/~adrian/731-sp04/readings/GL-cap.pdf
https://users.ece.cmu.edu/~adrian/731-sp04/readings/GL-cap.pdf
https://dl.acm.org/doi/10.5555/1624775.1624804
https://dl.acm.org/doi/10.5555/1624775.1624804
https://www.ijcai.org/Proceedings/73/Papers/027B.pdf
https://www.brianstorti.com/the-actor-model/
https://commons.wikimedia.org/wiki/File:Fifo_queue.png
https://commons.wikimedia.org/wiki/File:Fifo_queue.png
http://dx.doi.org/10.15439/2016F498
http://dx.doi.org/10.15439/2016F498
https://www.scala-lang.org/
https://www.scala-lang.org/old/node/25
https://www.scala-lang.org/old/node/25
http://openbook.rheinwerk-verlag.de/javainsel/
http://openbook.rheinwerk-verlag.de/javainsel/

	Einleitung mit Motivation
	Einführende Begriffe
	Nebenläufig, Parallel und Verteilt
	Programme, Threads, Prozesse und Scheduler
	Race Conditions und Deadlocks

	Leistungsmaße
	Laufzeit und Overheadzeit
	Speedup

	Nebenläufige und verteilte Verarbeitung am Beispiel des Aktorenmodells
	Das Aktorenmodell
	Scala
	Nebenläufigkeit und Seiteneffekte
	Akka Actors

	Filtern von Primzahlen als Beispielimplementierung
	Aufbau der Anwendung
	Referenzsystem und die gewählten Parameter
	Auswertung von Laufzeit und Speedup

	Race Condition an einem Beispiel
	Ausblick Steigerung der Ausfallsicherheit

	Anänge
	Ergebnisse der Messungen
	Log der Messläufe
	Skripte für AWS EC2 Instanzen mit Ubuntu Server 20.x
	EC2 Installation
	EC2 Lauf

